Issue
Korean Journal of Chemical Engineering,
Vol.39, No.12, 3464-3472, 2022
Comprehensive evaluation of high-temperature sintering behavior of sea sand vanadia-titania magnetite based on grey relational analysis
Sea sand vanadia-titania magnetite is difficult to pelletize, and it is difficult for iron and steel enterprises to use it as a raw material for ironmaking. In this paper, the high-temperature physicochemical characteristics and sintering behavior of sea sand vanadia-titania magnetite were comprehensively studied and systematically evaluated. The high-temperature metallurgical physicochemical characteristics of different iron ore powders and under different experimental conditions were studied by the micro-sintering experimental system. The high-temperature sintering indexes were comprehensively evaluated by the grey correlation analysis, and the influence of sea sand ore on sintering performance was investigated by sintering pot experiment. The research results show that the high-temperature sintering characteristics of sea sand vanadia-titania magnetite were the worst, and the grey correlation degree was the lowest. The high-temperature sintering characteristics of sintered blocks with sea sand ore were affected by changing the basicity and the addition amount of sea sand ore. When the basicity was 0.8 and the addition amount of sea sand ore was 15 wt%, the evaluation index of grey relational analysis was the best. The vertical sintering speed and tumble index were slightly reduced by adding sea sand ore, but the sinter yield was improved and the particle size distribution of sinter was optimized. The experimental results provide a certain data reference for the actual production of sinter with sea sand vanadia-titania magnetite.
[References]
  1. Cheng GJ, Xue XX, Jiang T, Duan PN, Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., 47(3), 1713, 2016
  2. Lu YN, Wu SL, Zhou H, Ma LM, Liu ZJ, Wang Y, ISIJ Int., 61(8), 2211, 2021
  3. Du HG, Principle of smelting vanadium-titanium magnetite in the blast furnace, 1st ed., Science Press, Beijing, China (1996).
  4. Cheng GJ, Xing ZX, Yang H, Xue XX, Minerals, 11(1), 87, 2021
  5. Wright JB, N.Z. J. Geol. Geophys., 10(3), 659, 1967
  6. Xing ZX, Cheng GJ, Gao ZX, Yang H, Xue XX, Metall. Res. Technol., 117, 411, 2020
  7. Xing ZX, Cheng GJ, Yang H, Xue XX, Experimental research on preparation of oxidized pellets with high proportion sea sand mine, The 12th CSM Steel Congress, Beijing (2019).
  8. Qin YL, Ling QF, Zhang K, Liu H, Minerals, 11(8), 793, 2021
  9. Wang Z, Pinson D, Chew S, Rogers H, Monaghan BJ, Pownceby MI, Webster NAS, Zhang GQ, Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., 47, 330, 2016
  10. Xing ZX, Cheng GJ, Gao ZX, Yang H, Xue XX, Metals, 11(2), 269, 2021
  11. Podder A, Trans. Indian Inst. Met., 74(6), 1479, 2021
  12. Park E, Ostrovski O, ISIJ Int., 44, 74, 2004
  13. Longbottom RJ, Monaghan BJ, Mathieson JG, ISIJ Int., 53, 1152, 2013
  14. Geng C, Sun TC, Ma YW, Xu CY, Yang HF, J. Iron Steel Res. Int., 24, 156, 2017
  15. Wu SL, Dai YM, Dauter O, Pei YD, Xu J, Han HL, J. Univ. Sci. Technol. Beijing, 32(6), 719, 2010
  16. Wu SL, Liu Y, Du JX, Mi K, Lin H, J. Univ. Sci. Technol. Beijing, 24(3), 254, 2002
  17. Zhou H, Wang JK, Ma PN, Meng HX, Cheng FZ, Luo JW, J. Mater. Res. Technol., 15, 4475, 2021
  18. Zhou MX, Zhou H, J. Mater. Res. Technol., 8, 13106, 2020
  19. Xue YX, Pan J, Zhu DQ, Guo ZQ, Yang CC, Lu LM, Tian HY, Minerals, 10(9), 802, 2020
  20. Wu SL, Zhang GL, Steel Research Int., 86(9), 1014, 2015
  21. Wu SL, Su B, Qi YH, Kou MY, Li Y, Zhang WL, Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., 48(5), 2469, 2017
  22. Zhai XB, Wu SL, Zhou H, Su LX, Ma XD, Ironmak. & Steelmak., 47(4), 405, 2020
  23. Liu DH, Liu H, Zhang JL, Liu ZJ, Xue X, Wang GW, Kang QF, Int. J. Min. Met. Mater., 24(9), 991, 2017
  24. Liu DH, Li JH, Peng Y, Zhang JL, Wang GW, Xue X, J. Iron Steel Res. Int., 26, 691, 2019
  25. Liu DH, Zhang JL, Liu ZJ, Wang YZ, Xue X, Yan J, JOM, 68(9), 2418, 2016
  26. Wu SL, Han HL, Li HX, Xu J, Yang SD, Liu XQ, Int. J. Miner. Metall. Mater., 17(1), 11, 2010
  27. Zhang GL, Wu SL, Chen SG, Su B, Que ZG, Hou CG, Int. J. Miner. Metall. Mater., 21(10), 962, 2014
  28. Cheng GJ, Li LJ, Xue XX, Yang H, Zhang WJ, Bai RG, J. Mater. Res. Technol., 17, 2657, 2022
  29. Zhang JL, Hu ZW, Zuo HB, Liu ZJ, Zhao ZX, Yang TJ, Ironmak Steelmak, 41(4), 279, 2014
  30. He H, Lv X, Wang J, Miner. Metall. Explor., 38, 2271, 2021
  31. Qie YN, Liu DH, Lv Q, Liu XJ, Sun YQ, J. Iron Steel Res., 27(9), 14, 2015
  32. Wang Y, Zhang C, Jiang GP, Int. J. Min. Sci. Technol., 26(3), 395, 2016
  33. Zhang GL, Wu SL, Chen SG, Zhu J, Fan JX, Su B, ISIJ Int., 53(9), 1515, 2013
  34. Tang WD, Yang ST, Cheng GJ, Gao ZX, Yang H, Xue XX, Minerals, 8(7), 263, 2018
  35. Yang ST, Zhou M, Jiang T, Wang YJ, Xue XX, T. Nonferr. Metal. Soc., 25(6), 2087, 2015
  36. Zhang LH, Gao ZX, Yang ST, Tang WD, Xue XX, Metals, 10(5), 569, 2020