Issue
Korean Journal of Chemical Engineering,
Vol.39, No.12, 3295-3304, 2022
Cell performance and polarization analysis on different operating conditions in anion exchange membrane-unitized regenerative fuel cells (AEM-URFCs)
Several electrode parameters and operating conditions were investigated on the cell performance of anion exchange membrane-unitized regenerative fuel cell (AEM-URFC). The AEM-URFC’s performance increased with increasing the ionomer and catalyst contents on the electrode up to an optimum amount and then decreased due to the blockage of mesopores on the catalyst layers. The AEM-URFC with optimal ionomer and catalyst loaded showed the maximum current (255.0mA/cm2) and power (127.5mW/cm2) density at 0.50 V for fuel cell mode at 60 ℃. Also, three different kinds of commercial AEMs were tested in URFC. The catalyst for the bifunctional oxygen electrode had a pronounced influence on the cell performance of AEM-URFC. Ir black showed the highest WE performance than other precious catalysts (Pt/C, PtRu black, and IrO2), but lower performance in FC mode than Pt/C and PtRu catalysts. The optimized AEM-URFC had 48.30% round trip efficiency, which is comparable or superior to the results reported in the literature.
[References]
  1. Sarapuu A, Kibena-Põldsepp E, Borgheib M, Tammeveski K, J. Mater. Chem. A, 6, 776, 2018
  2. Yim SD, Lee WY, Yoon YG, Sohn YJ, Park GG, Yang TH, Kim CS, Electrochim. Acta, 50, 713, 2004
  3. Pettersson J, Ramsey B, Harrison D, J. Power Sources, 157, 28, 2006
  4. Dhar HP, J. Appl. Electrochem., 23, 32, 1993
  5. Wang Y, Leung DYC, Xuan J, Wang H, Renew. Sust. Energ. Rev., 65, 961, 2016
  6. Omrani R, Shabani B, Int. J. Hydrog. Energy, 44, 3834, 2019
  7. Wu X, Scott K, J. Mater. Chem., 21, 12344, 2011
  8. Xiao L, Zhang S, Pan J, Yang C, He M, Zhuang L, Lu J, Energy Environ. Sci., 5, 7869, 2012
  9. Gottesfeld S, Dekel DR, Page M, Bae C, Yan Y, Zelenay P, Kim YS, J. Power Sources, 375, 170, 2018
  10. Lu S, Pan J, Huang A, Zhuang L, Lu J, Proc. Natl. Acad. Sci. U.S.A., 105, 20611, 2008
  11. Dresp S, Luo F, Schmack R, Kühl S, Gliech M, Strasser P, Energy Environ. Sci., 9, 2020, 2016
  12. Wu X, Scott K, J. Power Sources, 214, 124, 2012
  13. Li G, Pickup PG, J. Electrochem. Soc., 150, C745, 2003
  14. Mamlouk M, Scott K, Horsfall JA, Williams C, Int. J. Hydrog. Energy, 36, 7191, 2011
  15. Yang D, Yu H, Li G, Zhao Y, Liu Y, Zhang C, Song W, Shao Z, J. Power Sources, 267, 39, 2014
  16. Paddison SJ, Promislow KS, Device and materials in PEM fuel cells, Springer Science & Business Media, New York (2008).
  17. Ünlü M, Zhou J, Anestis-Richard I, Kim H, Kohl PA, Electrochim. Acta, 56, 4439, 2011
  18. Carmo M, Doubek G, Sekol RC, Linardi M, Taylor AD, J. Power Sources, 230, 169, 2013
  19. John RV, Robert CTS, Graham LW, Yanling C, J. Phys. Chem. B, 110(42), 21041, 2006
  20. Park JE, Kang SY, Oh SH, Kim JK, Lim MS, Ahn CY, Cho YH, Sung YE, Electrochim. Acta, 295, 99, 2019
  21. Gode P, Jaouen F, Lindbergh G, Lundblad A, Sundholm G, Electrochim. Acta, 48, 4175, 2003
  22. Cho MK, Park HY, Choe S, Yoo SJ, Kim JY, Kim HJ, Henkensmeier D, Lee SY, Sung YE, Park HS, Jang JH, J. Power Sources, 347, 283, 2017
  23. Li YS, Zhao TS, Yang WW, Int. J. Hydrog. Energy, 35, 5656, 2010
  24. Ahn SH, Lee BS, Choi I, Yoo SJ, Kim HJ, Cho EA, Henkensmeier D, Nam SW, Kim SK, Jang JH, Appl. Catal. B: Environ., 154-155, 197, 2014
  25. Chen C, Tse YLS, Lindberg GE, Knight C, Voth GA, J. Am. Chem. Soc., 138, 991, 2016
  26. Maurya S, Shin SH, Kim Y, Moon SH, J. RSC Adv., 5, 37206, 2015
  27. Li D, Park EJ, Zhu W, Shi Q, Zhou Y, Tian H, Lin Y, Sherov A, Zulevi B, Baca ED, Fujimoto C, Chung HT, Kim YS, J. Nat. Energy, 5, 378, 2020
  28. Cho MK, Park HY, Lee HJ, Kim HJ, Lim A, Henkensmeier D, Yoo SJ, Kim JY, Lee SY, Park HS, Jang JH, J. Power Sources, 382, 22, 2018
  29. Yang D, Yu H, Li G, Song W, Liu Y, Shao Z, Chin. J. Catal., 35, 1091, 2014
  30. Zhang Y, Wang C, Wan N, Mao Z, Int. J. Hydrog. Energy, 32, 400, 2007
  31. Yim SD, Park GG, Sohn YJ, Lee WY, Yoon YG, Yang TH, Um S, Yu SP, Kim CS, Int. J. Hydrog. Energy, 30, 1345, 2005
  32. Jang MJ, Won MS, Lee KH, Choi SM, J. Korean Inst. Surf. Eng., 49, 159, 2016
  33. Antolini E, Appl. Catal. B: Environ., 88, 1, 2009
  34. Ramli ZAC, Kamarudin SK, J. Nanoscale Res. Lett., 13, 410, 2018
  35. Gayen P, Saha S, Liu X, Sharma K, Ramani VK, PNAS, 118(40), e2107205, 2021
  36. Cherevko S, Geiger S, Kasian O, Kulyk N, Grote JP, Savan A, Shrestha BR, Merzlikin S, Breitbach B, Luding A, Mayrhofer KJJ, Catal. Today, 262, 170, 2016
  37. Zhuo X, Sui S, Zhang J, Int. J. Hydrog. Energy, 38, 4792, 2013
  38. Ng JWD, Tang M, Jaramillo TF, J. Energy Environ. Sci., 7, 2017, 2014
  39. Ng JWD, Gorlin Y, Hatsukade T, Jaramillo TF, Adv. Energy Mater., 3, 1545, 2013
  40. Wu X, Scott K, J. Power Sources, 206, 14, 2012
  41. Zhong H, Tian R, Gong X, Li D, Tang P, Alonso-Vante N, Feng Y, J. Power Sources, 361, 21, 2017
  42. Campos-Roldán CA, Zhong H, Unni SM, de G. González-Huerta R, Feng Y, Alonso-Vante N, ACS Appl. Energy Mater., 3(8), 7397, 2020