Issue
Korean Journal of Chemical Engineering,
Vol.39, No.12, 3286-3294, 2022
The effect of concentration of silica nanoparticles surface-modified by zwitterionic surfactants for enhanced oil recovery (EOR)
We investigated the effects of silica nanoparticle (NP) on nanofluid flooding for enhanced oil recovery. All NPs used in experiments were identically surface modified with PSS-co-MA and a zwitterionic surfactant. In core flooding experiments, the oil production from Berea Sandstone showed an increasing trend as the NP concentration increased within the range of 0.1 to 2.0wt%. This result was closely associated with variance of interfacial tension (IFT) and contact angle (CA). IFT continued to decrease as the NP concentration increased until 2.0 wt%. However, IFT cannot further decrease with an increase in the NP concentration beyond 2.0 wt%, because total interaction energy may be reduced due to the decrease of electrostatic repulsion force by the closer spacing between NPs. When combined with silica nanofluid soaking, the CA of the rock/oil/nanofluids increased with increasing NP concentration; this indicated wettability alteration to a more water-wet condition caused by an enhanced fluid ability to spread silica NPs along the rock surfaces. Because of this effect, the capillary pressure is expected to be sufficiently reduced by nanofluid flooding, compared with brine flooding. However, at higher NP concentration, the NPs caused permeability reduction and an increased pressure drop attributable to the residual NPs in rock pores. This result implies additional oil recovery attributable to improved sweep efficiency related to the log jamming phenomenon caused by the residual NPs, as well as the IFT reduction and wettability alteration, thus leading to enhanced oil recovery.
[References]
  1. Rezk MY, Allam NK, Ind. Eng. Chem. Res., 58, 16287, 2019
  2. Li S, Hendraningrat L, Torsaeter O, The international petroleum technology conference, Beijing, China, March 26-28 (2013).
  3. Rudyak VY, Krasnolutskii SL, Phys. Lett. A, 378, 1845, 2014
  4. Mishra PC, Mukherjee S, Nayak SK, Panda A, Int. Nano Lett., 4, 109, 2014
  5. Metin C, Bonnecaze RT, Nguyen QP, SPE Res. Eval. Eng., 16, 327, 2013
  6. Fan H, Striolo A, Phys. Rev. E, 86, 051610, 2011
  7. Betancur S, Giraldo LJ, Carrasco-Marín F, Riazi M, Manrique EJ, Quintero H, García HA, Franco-Ariza CA, Cortés FB, ACS Omega, 4, 16171, 2019
  8. de Lara LS, Michelon MF, Metin CO, Nguyen QP, Miranda CR, J. Chem. Phys., 136, 164702, 2012
  9. Bila A, Torsaeter O, Energies, 13, 5720, 2020
  10. Sun X, Zhang Y, Chen G, Gai Z, Energies, 10, 345, 2017
  11. Hu Z, Azmi SM, Raza G, Glover PWJ, Wen D, Energy Fuels, 30, 2791, 2016
  12. Son HA, Ahn T, Appl. Sci., 11, 524, 2021
  13. Peng B, Zhang L, Luo J, Wang P, Ding B, Zeng M, Cheng Z, RSC Adv., 7, 32246, 2017
  14. Yuan B, Wang W, Moghanloo RG, Su Y, Wang K, Jiang M, Energy Fuels, 31, 795, 2017
  15. Ju B, Fan T, Powder Technol., 192, 195, 2009
  16. Hendraningrat L, Li S, Torsaeter O, The SPE russian oil and gas exploration and production technical conference and exhibition, Moscow, Russia, 16-18 October (2012).
  17. Ju B, Fan T, Li Z, J. Pet. Sci. Eng., 86, 206, 2012
  18. Li K, Wang D, Jiang S, Oil Gas Sci. Technol., 73, 37, 2018
  19. Lim S, Wasan D, J. Colloid Interface Sci., 500, 96, 2017
  20. Eltoum H, Yang YL, Hou JR, Pet. Sci. Technol., 18, 136, 2021
  21. Choi SK, Son HA, Kim HT, Kim JW, Energy Fuels, 31, 7777, 2017
  22. Zhang H, Nikolov A, Wasan D, Energy Fuels, 28, 3002, 2014
  23. Wasan DT, Nikolov AD, Nature, 423, 156, 2003
  24. Nikolov A, Wu P, Wasan D, Adv. Colloid Interface Sci., 264, 1, 2019
  25. Zhou J, Wang Y, Geng J, Jing D, Phys. Fluids, 30, 072107, 2018
  26. Yuan L, Zhang Y, Dehghanpour H, Energy Fuels, 35, 7787, 2021
  27. Bhauiyan MHU, Saidur R, Amalina MA, Mostafizur RM, Islam AKMS, Procedia Eng., 105, 431, 2015
  28. Radiom M, Yang C, Chan WK, The international society for optical engineering, Singapore, 18-20 April (2010).
  29. Zhu BJ, Zhao WL, Li JK, Guan YX, Li DD, Mater. Sci. Forum, 688, 266, 2011
  30. Tanvir S, Qiao L, Nanoscale Res. Lett., 7, 1, 2012
  31. Son HA, Lee TH, Appl. Sci., 11, 7184, 2021
  32. Zhang T, Murphy MJ, Yu H, Bagaria HG, Yoon KY, Nielson BM, Bielawski CW, Johnston KP, Huh C, Bryant SL, SPE J., 20, 667, 2015
  33. Yu H, He Y, Li P, Li S, Zhang T, Rodriguez-Pin E, Du S, Wang C, Cheng S, Bielawski CW, Sci. Rep., 5, 8702, 2015
  34. Son HA, Yoon KY, Lee GJ, Cho JW, Choi SK, Kim JW, Im KC, Kim HT, Lee KS, Sung WM, J. Pet. Sci. Eng., 126, 152, 2015
  35. Yoon KY, Son HA, Choi SK, Kim JW, Sung WM, Kim HT, Energy Fuels, 30, 2628, 2016
  36. Matter F, Barron ALL, Niederberger M, Nano Today, 30, 100827, 2020
  37. Reincke F, Hickey SG, Kegel WK, Vanmaekelbergh D, Angew. Chem.-Int. Edit., 43, 458, 2004
  38. Qi L, Song C, Wang T, Li Q, Hiraski GJ, Verduzco R, Langmuir, 34, 652, 2018
  39. Qi L, ShamsiJazeyi H, Ruan G, Mann JA, Lin YH, Song C, Ma Y, Yang L, Tour JM, Hirasaki GJ, Verduzco R, Energy Fuels, 31, 1339, 2017
  40. Moosavi M, Goharshadi EK, Youssefi A, J. Heat Transf. -Trans. ASME, 31, 599, 2010
  41. Chengara A, Nikolov A, Wasan DT, Trokhymchuk A, J. Colloid Interface Sci., 280, 192, 2005
  42. Shi JQ, Xue Z, Durucan S, Energy Procedia, 4, 5001, 2011
  43. Brown HW, Petroleum Trans. AIME, 192, 67, 1951
  44. Ahmed T, Reservoir engineering handbook (10th ed.), Gulf Professional Publishing, Elsevier (2010).
  45. Duan F, Kwek D, Crivoi A, Nanoscale Res. Lett., 6, 1, 2011
  46. Lake LW, Enhanced oil recovery, United Sates, Prentice Hall (1989).
  47. Zhang T, Roberts M, Bryant SL, Huh C, The SPE International Symposium Oilfield Chemistry, Woodlands, TX, April 20- 22 (2009).