Issue
Korean Journal of Chemical Engineering,
Vol.39, No.12, 3246-3260, 2022
Boiling heat transfer characteristics of bionic flower bud structure microchannels
In order to improve the boiling heat transfer capacity within the microstructure, a superhydrophilic surface model with a bionic flower bud structure was established and the flow-boiling heat transfer characteristics were simulated. The temperature, velocity and vapor phase distribution contours under different working conditions were obtained. The effects of different flower spacings, superheat degrees and surfaces on boiling heat transfer were discussed. The study found that the droplet has more vaporization cores on the superhydrophilic surface, and the bubbles can effectively destroy the velocity and temperature boundary layers, thereby enhancing the boiling heat transfer ability. The heat transfer area under the narrow flower spacing is larger, and the vaporization core is more, which is more conducive to boiling heat transfer. When the superheat degree is 80 K, the superhydrophilic surface with the flower spacing L=0 µm has the strongest heat transfer ability, which is 1.59 times that of the common surface, and the mass transfer rate is increased by 23.5%.
[References]
  1. Yang X, Liu J, Wang G, Wei J, Appl. Therm. Eng., 210, 118350, 2022
  2. Wang Y, Qi C, Zhao R, Wang C, Appl. Therm. Eng., 208, 118258, 2022
  3. Okonkwo EC, Wole-Osho I, Almanassra IW, Abdullatif YM, Al-Ansari T, J. Therm. Anal. Calorim., 145(6), 2817, 2021
  4. Karayiannis TG, Mahmoud MM, Appl. Therm. Eng., 115, 1372, 2017
  5. Jia Y, Huang J, Wang J, Li H, Entropy, 23(11), 1482, 2021
  6. Xu Z, Wang J, Jia Y, Geng X, Liu Z, Appl. Therm. Eng., 108, 150, 2016
  7. Jia Y, Yao S, Wang J, Li H, Chem. Ind. Eng. Prog., 40(12), 6423, 2021
  8. Zhang K, Bai L, Jin H, Lin G, Yao G, Wen D, Appl. Therm. Eng., 202, 117759, 2022
  9. Rostami S, Afrand M, Shahsavar A, Sheikholeslami M, Kalbasi R, Aghakhani S, Shadloo MS, Oztop HF, Energy, 211, 118698, 2020
  10. Deb S, Das M, Das DC, Pal S, Das AK, Das R, Int. J. Heat Mass Transf., 170, 120994, 2021
  11. Deb S, Pal S, Das DC, Das M, Das AK, Das R, Heat Mass Transfer, 56(12), 3273, 2020
  12. Zhang TY, Mou LW, Zhang YC, Zhang JY, Li JQ, Fan LW, Case Stud. Therm. Eng., 24, 100882, 2021
  13. Zhang TY, Mou LW, Fan LW, Appl. Therm. Eng., 185, 116453, 2021
  14. Recinella A, Kandlikar SG, J. Heat Transf. -Trans. ASME, 140(2), 021502, 2018
  15. Drummond KP, Back D, Sinanis MD, Janes DB, Peroulis D, Weibel JA, Garimella SV, Int. J. Heat Mass Transf., 117, 319, 2018
  16. Cheng P, Wang G, Quan X, J. Heat Transf. -Trans. ASME, 131(4), 043211, 2009
  17. Sun H, Lin G, Jin H, Bu X, Cai C, Jia Q, Ma K, Wen D, Renew. Energy, 179, 1179, 2021
  18. Rasitha TP, Thinaharan C, Vanithakumari SC, Philip J, Colloids Surf. A: Physicochem. Eng. Asp., 636, 128110, 2022
  19. TP R, Philip J, Appl. Surf. Sci., 585, 152628, 2022
  20. Vanithakumari SC, Jena G, Sofia S, Thinaharan C, George RP, Philip J, Surf. Coat. Technol., 400, 126074, 2020
  21. Li W, Zhou K, Li J, Feng Z, Zhu H, Int. J. Heat Mass Transf., 119, 601, 2018
  22. Zhou W, Han D, Xia G, Appl. Surf. Sci., 591, 153155, 2022
  23. Tran NG, Chun DM, J. Mater. Process. Technol., 297, 117245, 2021
  24. Kaya AST, Cengiz U, Prog. Org. Coat., 126, 75, 2019
  25. Adachi T, Latthe SS, Gosavi SW, Roy N, Suzuki N, Ikari H, Kato K, Katsumata KI, Nakata K, Furudate M, Inoue T, Kondo T, Appl. Surf. Sci., 458, 917, 2018
  26. Ma Y, Tong J, Zhuang M, Liu J, Cheng S, Pei X, Li H, Sang D, Results Phys., 15, 102628, 2019
  27. Mahringer A, Hennemann M, Clark T, Bein T, Medina DD, Angew. Chem.-Int. Edit., 60(10), 5519, 2021
  28. Sato O, Kubo S, Gu ZZ, Accounts Chem. Res., 42(1), 1, 2009
  29. Deng Y, Zhang G, Bai R, Shen S, Zhou X, Wyman I, J. Membr. Sci., 569, 60, 2019
  30. Feng Y, Chang F, Hu Z, Li H, Zhao J, Int. J. Therm. Sci., 163, 106814, 2021
  31. Liao L, Bao R, Liu Z, Heat Mass Transfer, 44(12), 1447, 2008
  32. Liu R, Liu Z, Int. J. Heat Mass Transf., 143, 118534, 2019
  33. Vontas K, Andredaki M, Georgoulas A, Miché N, Marengo M, Int. J. Heat Mass Transf., 172, 121133, 2021
  34. Phan HT, Caney N, Marty P, Colasson S, Gavillet J, CR. Mécanique, 337(5), 251, 2009
  35. Sia GD, Tan MK, Chen GM, Hung YM, Case Stud. Therm. Eng., 27, 101283, 2021
  36. Yang G, Liu J, Cheng X, Wang Y, Chu X, Mukherjee S, Terzis A, Schneemann A, Li W, Wu J, Fischer RA, J. Mater. Chem. A, 9(45), 25480, 2021
  37. Lim YS, Hung YM, Energy Conv. Manag., 244, 114522, 2021
  38. Ze H, Wu F, Chen S, Gao X, Adv. Mater. Interfaces, 7(14), 2000482, 2020
  39. Nam Y, Aktinol E, Dhir VK, Ju YS, Int. J. Heat Mass Transf., 54(7-8), 1572, 2011
  40. Lin CW, Lin YC, Hung TC, Lin MC, Hsu HY, Int. J. Heat Mass Transf., 171, 121058, 2021
  41. Zhan H, Li S, Jin Z, Zhang G, Wang L, Li Q, Zhang Z, J. Mech. Sci. Technol., 36(2), 1025, 2022
  42. Ling K, Li ZY, Tao WQ, Numer. Heat Transf. A-Appl., 65(10), 949, 2014
  43. Vontas K, Andredaki M, Georgoulas A, Miché N, Marengo M, Int. J. Heat Mass Transf., 172, 121133, 2021
  44. Knudesen M, The kinetic theory of gases, CRC Press. Publications, Boston (1998).
  45. Lide D, CRC handbook of chemistry and physics, CRC Press. Publications, Florida (2003).
  46. Zhang J, Study on enhanced boiling heat transfer characteristics of microstructured heat exchange surfaces, MA thesis, JUST, Zhenjiang (2016).
  47. Lin Y, Luo Y, Li W, Minkowycz WJ, Int. J. Heat Mass Transf., 179, 121739, 2021