Issue
Korean Journal of Chemical Engineering,
Vol.39, No.12, 3227-3245, 2022
Numerical investigation and deep learning-based prediction of heat transfer characteristics and bubble dynamics of subcooled flow boiling in a vertical tube
Subcooled flow boiling presents an enormous ability of heat transfer rate, which is extremely important in the heat-dissipating systems of many industrial applications, such as power plants and internal combustion engines. Using an Euler-Euler-based three-dimensional numerical simulation of subcooled flow boiling in a vertical tube, we investigated different heat transfer quantities (average and local heat transfer coefficient, average and local vapor volume fraction, average and local wall temperature) and bubble dynamics quantities (bubble departure diameter, bubble detachment frequency, bubble detachment waiting time, and nucleation site density) under various boundary conditions (pressure, subcooled temperature, mass flux, heat flux). Numerical results show that an increase in heat flux leads to the increase in all of the physical quantities of interest but the bubble detachment frequency. An entirely opposite behavior is observed when we change the mass flux and inlet subcooled temperature. Furthermore, a rise in pressure reduces all of the target quantities but the wall temperature and bubble detachment frequency. Since numerical simulation of such multiphase flow requires significant computational resources, we also present a deep learning approach, based on artificial neural networks (ANN), to predicting the physical quantities of interest. Prediction results demonstrate that the ANN model is capable of accurately predicting the target quantities with mean absolute errors less than 2.5% and R-squared more than 0.93.
[References]
  1. Qiu Y, Garg D, Zhou L, Kharangate CR, Kim SM, Mudawar I, Int. J. Heat Mass Transf., 149, 119211, 2020
  2. Celata GP, Cumo M, Mariani A, Zummo G, Int. J. Therm. Sci., 39(9-11), 896, 2000
  3. Guo Z, Yang J, Tan Z, Tian X, Wang Q, Int. J. Heat Mass Transf., 174, 121296, 2021
  4. Zhou J, Bai J, Liu Y, Micromachines, 13(5), 781, 2022
  5. Lee J, Jo D, Chae H, Chang SH, Jeong YH, Jeong JJ, Exp. Therm. Fluid Sci., 69, 86, 2015
  6. Fan Q, Zhang Z, Huang X, Adv. Theory Simulations, 2200047, 2022
  7. Zhang G, Chen J, Zhang Z, Sun M, Yu Y, Wang J, Cai S, Smart Mater. Struct., 31(7), 075008, 2022
  8. Steinke ME, Kandlikar SG, J. Heat Transf. -Trans. ASME, 126(4), 518, 2004
  9. Jige D, Inoue N, Int. J. Heat Fluid Flow, 78, 108433, 2019
  10. Schrock V, Grossman L, Forced convection boiling studies. final report on forced convection vaporization project, California. Univ., Berkeley. Inst. of Engineering Research (1959).
  11. Bennett J, Trans. Inst. Chem. Eng., 39, 113, 1961
  12. Chen JC, Ind. Eng. Chem. Process Des. Dev., 5(3), 322, 1966
  13. Shah MM, ASHRAE Trans., 88, 185, 1982
  14. Bennett DL, Chen JC, AIChE J., 26(3), 454, 1980
  15. Kandlikar SG, J. Heat Transf. -Trans. ASME, 112(1), 219, 1990
  16. Lee HJ, Lee SY, Int. J. Multiph. Flow, 27(12), 2043, 2001
  17. Alimoradi H, Zaboli S, Shams M, Korean J. Chem. Eng., 39(1), 69, 2022
  18. Zaboli S, Alimoradi H, Shams M, J. Therm. Anal. Calorim., 147, 10659, 2022
  19. Bertsch SS, Groll EA, Garimella SV, Int. J. Heat Mass Transf., 52(7-8), 2110, 2009
  20. Bennett DL, Davies MW, Hertzler BL, Am. Inst. Chem. Eng. Symposium Ser., 76, 91, 1980
  21. Edelstein S, Perez A, Chen J, AIChE J., 30(5), 840, 1984
  22. Fang X, Wu Q, Yuan Y, Int. J. Heat Mass Transf., 107, 972, 2017
  23. Piasecka M, Int. J. Heat Mass Transf., 81, 114, 2015
  24. Strąk K, Piasecka M, Int. J. Heat Mass Transf., 158, 119933, 2020
  25. Paul S, Fernandino M, Dorao CA, Int. J. Heat Mass Transf., 164, 120589, 2021
  26. Zhang G, Zhang Z, Sun M, Yu Y, Wang J, Cai S, Adv. Eng. Mater., 2101680, 2022
  27. Chen B, Lu Y, Li W, Dai X, Hua X, Xu J, Wang Z, Zhang C, Gao D, Li Y, Int. J. Heat Mass Transf., 192, 122927, 2022
  28. Ahmadlou M, Delavar MR, Basiri A, Karimi M, J. Indian Soc. Remote Sensing, 47(1), 53, 2019
  29. Amirkolaee HA, Arefi H, Ahmadlou M, Raikwar V, Remote Sensing Environ., 274, 113014, 2022
  30. Azadeh A, Saberi M, Kazem A, Ebrahimipour V, Nourmohammadzadeh A, Saberi Z, Appl. Soft Comput., 13(3), 1478, 2013
  31. Zhou L, Fan Q, Huang X, Liu Y, Optimization, In press (2022).
  32. Alimoradi H, Shams M, Appl. Therm. Eng., 111, 1039, 2017
  33. Seong Y, Park C, Choi J, Jang I, Energies, 13(4), 968, 2020
  34. Wang X, Lyu X, Ocean Eng., 221, 108508, 2021
  35. Wang Y, Wang H, Zhou B, Fu H, Ocean Eng., 242, 110106, 2021
  36. Cheung S, Vahaji S, Yeoh G, Tu J, Int. J. Heat Mass Transf., 75, 736, 2014
  37. Launder BE, Spalding DB, Comput. Meth. Appl. Mech. Eng., 3, 269, 1974
  38. Ranz WE, Marshall WR, Chem. Eng. Prog., 48(3), 141, 1952
  39. Ishii M, Zuber N, AIChE J., 25(5), 843, 1979
  40. Kurul N, Podowski MZ, Multidimensional effects in forced convection subcooled boiling, In: Proceedings of the 9th Heat Transfer Conference, 19-24 (1990).
  41. Lemmert M, Chawla JM, Influence of flow velocity on surface boiling heat transfer coefficient, ISBN 0-12-314450-7, pp. 237-247 (1977).
  42. Tolubinsky VI, Kostanchuk DM, Vapour bubbles groth rate and heat transfer intensity at subcooled water boiling; Heat Transfer 1970.
  43. Cole R, AIChE J., 6(4), 533, 1960
  44. Bartolomei G, Brantov V, Molochnikov YS, Kharitonov YV, Solodkii V, Batashova G, Mikhailov V, Therm. Eng., 29(3), 132, 1982
  45. Rouhani SZ, Axelsson E, Int. J. Heat Mass Transf., 13(2), 383, 1970
  46. Krizhevsky A, Sutskever I, Hinton GE, Commun. ACM, 60(6), 84, 2017
  47. Svozil D, Kvasnicka V, Pospichal J, Chemometrics Intell. Lab. Syst., 39(1), 43, 1997
  48. Kingma DP, Jimmy B, Adam: A method for stochastic optimization, arXiv preprint arXiv:1412.6980 (2014).
  49. Bergles AE, Rohsenow WM, ASME J. Heat Transfer, 1, 365, 1964
  50. Liu D, Lee PS, Garimella SV, Int. J. Heat Mass Transf., 48(25-26), 5134, 2005
  51. Basu N, Warrier GR, Dhir VK, J. Heat Transf. -Trans. ASME, 124(4), 717, 2002
  52. Costigan G, Whalley P, Int. J. Multiph. Flow, 23(2), 263, 1997
  53. Basu N, Warrier GR, Dhir VK, J. Heat Transf. -Trans. ASME, 127(2), 131, 2005
  54. Friz W, Physic. Zeitschz., 36, 379, 1935
  55. Yang L, Guo A, Liu D, Exp. Heat Transf., 29(2), 221, 2016
  56. Sugrue R, Buongiorno J, McKrell T, Nucl. Eng. Des., 279, 182, 2014
  57. Yoo J, Estrada-Perez CE, Hassan YA, Int. J. Multiph. Flow, 84, 292, 2016
  58. Han CY, Griffith P, Int. J. Heat Mass Transf., 8, 905, 1965
  59. Zeng LZ, Klausner JF, J. Heat Transf. -Trans. ASME, 115, 215, 1993