Issue
Korean Journal of Chemical Engineering,
Vol.39, No.12, 3261-3266, 2022
Acoustic bubble array-induced jet flow for cleaning particulate contaminants on semiconductor wafers
The demand for semiconductors and the necessity of developing the next-generation semiconductor have skyrocketed with recent technological advancements, such as next-generation mobile networks, cloud computing, the Internet of Things, and artificial intelligence. Accordingly, a new type of semiconductor cleaning technique that can minimize environmental impact and physical harm to the exceedingly thin structures in semiconductor chips must be developed. This work proposes a cleaning strategy for particle contamination on semiconductor wafer surfaces by utilizing jet flow created by bubble oscillation constrained in arrays of microcylinders. The variation in the maximum jet flow velocity caused by single bubble oscillation constrained in a microcylinder, which is affected by physical factors, such as applied voltage, frequency, and microcylinder dimensions, has been investigated. A wafer cleaning apparatus that comprised 9×9 arrays of microcylinders was designed based on experimental data on single bubble oscillation constrained in a microcylinder. The maximum jet flow velocity for the multi-arrays of microcylinders can be attained up to 148.5mm/s, which is nearly five times the maximum value obtained from a single cylinder, even with a lower voltage applied than with a single microcylinder. The wafer cleaning apparatus removes particulates with different wettabilities and sizes from contaminated semiconductor wafers successfully with a high cleaning efficiency of up to 92.5%. The current effort makes an important contribution to the development of semiconductor cleaning techniques that can meet the requirements of current and next-generation semiconductor manufacturing in terms of yield, stability, and environmental pollution.
[References]
  1. Menon VB, Particle control for semiconductor manufacturing, 1st ed., Routledge, London (1990).
  2. Qin K, Li Y, J. Colloid Interface Sci., 261, 569, 2003
  3. Gale GW, Cui H, Reinhardt KA, Handbook of silicon wafer cleaning technology, 3rd ed., William Andrew, New York (2018).
  4. Hymes D, Malik I, Zhang J, Emami R, Solid State Technol., 40, 209, 1997
  5. Xu K, Vos R, Vereecke G, Doumen G, Fyen W, Mertens PW, Heyns MM, Vinckier C, Fransaer J, Kovacs F, J. Vac. Sci. Technol. B, 23, 2160, 2005
  6. Kuehn T, Kittelson D, Wu Y, Gouk R, J. Aerosol Sci., 27, 427, 1996
  7. Gale G, Busnaina A, Part. Sci. Technol., 13, 197, 1995
  8. Yamamoto K, Nakamura A, Hase U, IEEE Trans. Semicond. Manuf., 12, 288, 1999
  9. Hattori T, Ultraclean surface processing of silicon wafers, Springer, Heidelberg (1998).
  10. Li X, Strojwas AJ, Swecker AL, Reddy M, Milor L, Lin Y, Proc. SPIE, 3216, 167, 1997
  11. Okorn-Schmidt HF, Holsteyns F, Lippert A, Mui D, Kawaguchi M, Lechner C, Frommhold PE, Nowak T, Reuter F, Piqué MB, ECS J. Solid State Sci. Technol., 3, N3069, 2013
  12. Plesset MS, Prosperetti A, Annu. Rev. Fluid Mech., 9, 145, 1977
  13. Lauterborn W, Kurz T, Rep. Prog. Phys., 73, 106501, 2010
  14. Milne AJB, Defez B, Cabrerizo-Vílchez M, Amirfazli A, Adv. Colloid Interface Sci., 203, 22, 2014
  15. Hashmi A, Yu G, Reilly-Collette M, Heiman G, Xu J, Lab Chip, 12, 4216, 2012
  16. Ryu K, Chung SK, Cho SK, J. Assoc. Lab. Autom., 15, 163, 2010
  17. Tovar AR, Patel MV, Lee AP, Microfluid. Nanofluid., 10, 1269, 2011
  18. Patel MV, Nanayakkara IA, Simon MG, Lee AP, Lab Chip, 14, 3860, 2014
  19. Liu RH, Yang J, Pindera MZ, Athavale M, Grodzinski P, Lab Chip, 2, 151, 2002
  20. Chung SK, Zhao Y, Cho SK, J. Micromech. Microeng., 18, 095009, 2008
  21. Chung SK, Cho SK, J. Micromech. Microeng., 18, 125024, 2008
  22. Chung SK, Cho SK, Microfluid. Nanofluid., 6, 261, 2009
  23. Kwon JO, Yang JS, Lee SJ, Rhee K, Chung SK, J. Micromech. Microeng., 21, 115023, 2011
  24. Chung SK, Kwon JO, Cho SK, J. Adhes. Sci. Technol., 26, 1965, 2012
  25. Lee KH, Lee JH, Won JM, Rhee K, Chung SK, Sens. Actuators A-Phys., 188, 442, 2012
  26. Shin JH, Seo J, Hong J, Chung SK, Sens. Actuators B-Chem., 246, 415, 2017
  27. Dong Z, Yao C, Zhang X, Xu J, Chen G, Zhao Y, Yuan Q, Lab Chip, 15, 1145, 2015
  28. Chen Y, Lee S, Integr. Comp. Biol., 54, 959, 2014
  29. Oh JS, Kwon YS, Lee KH, Jeong W, Chung SK, Rhee K, Comput. Biol. Med., 44, 37, 2014
  30. Marmottant P, Hilgenfeldt S, Nature, 423, 153, 2003
  31. Gac SL, Zwaan E, van den Berg A, Ohl CD, Lab Chip, 7, 1666, 2007
  32. Chung SK, Rhee K, Cho SK, Int. J. Precis. Eng. Manuf., 11, 991, 2010
  33. Li Y, Liu X, Huang Q, Ohta AT, Arai T, Lab Chip, 21, 1016, 2021
  34. Ozcelik A, Rich J, Huang TJ, Lab Chip, 22, 297, 2022
  35. Feng J, Yuan J, Cho SK, Lab Chip, 16, 2317, 2016
  36. Feng J, Yuan J, Cho SK, Lab Chip, 15, 1554, 2015
  37. Qiul T, Palagil S, Mark AG, Meldel K, Adams F, Fischer P, Appl. Phys. Lett., 109, 191602, 2016
  38. Ren L, Nama N, McNeill JM, Soto F, Yan Z, Liu W, Wang W, Wang J, Mallouk TE, Sci. Adv., 5, eaax3084, 2019
  39. Liu FW, Zhan Y, Cho SK, J. Micromech. Microeng., 31, 084001, 2021