Issue
Korean Journal of Chemical Engineering,
Vol.39, No.11, 3039-3047, 2022
Selective absorption of H2S and CO2 from simulated coke oven gas by aqueous blends of N-methyldiethanolamine and tetramethylammonium glycine
Tetramethylammonium glycine ([N1111][Gly]) can be completely ionized into cation [N1111]+ and anion [Gly]- in aqueous solution. The anion contains an amino -NH2 and a carboxyl -COO-, both of which can react with hydrogen sulfide (H2S). Therefore, [N1111][Gly] was used to promote the selective absorption of H2S in coke oven gas (COG) by N-methyldiethanolamine (MDEA). The absorption performance and selectivity of H2S in the aqueous solution of MDEA-[N1111][Gly] were investigated. The effects of MDEA mass fraction, [N1111][Gly] mass fraction, temperature, H2S partial pressure and CO2 partial pressure on the absorption capacity and selectivity were clarified. The results showed that an aqueous solution of MDEA-[N1111][Gly] has good selectivity for H2S in COG. The absorption capacity was large and the mass fraction of the solute in the absorbent reached more than 0.55, thereby having outstanding advantages in the aspects of saving energy consumption and operating cost and having a good application potential.
[References]
  1. China business intelligence network
  2. Park JK, Lee SY, Kim JI, Um W, Yoo C, J. Environ. Chem. Eng., 9, 105037, 2021
  3. Wang GP, China Metallurgy, 22, 25, 2012
  4. de Oliveira Carneiro L, de Vasconcelos SF, de Farias Neto GW, Brito RP, Brito KD, Sep. Purif. Technol., 257, 117862, 2021
  5. Yan H, Tian JS, Fuel Chem. Process., 35, 25, 2004
  6. Kazak LA, Yarmoshik AF, Li VM, Coke Chem., 61, 376, 2018
  7. Yan CQ, Yu LR, Fuel. Chem. Process., 35, 26, 2004
  8. Huang P, Ling KC, Coal Convers., 28, 64, 2005
  9. Zhang LJ, Metallurgical Power, 3, 17, 2013
  10. Nasir P, Mather AE, Can. J. Chem. Eng., 55, 715, 1977
  11. Song CF, Liu QL, Ji N, Deng S, Zhao J, Kitamura Y, Appl. Energy, 204, 353, 2017
  12. Anu F, Rikov YA, Kuranov GL, Smirnova NA, Russ. J. Appl. Chem., 80, 515, 2007
  13. Li MH, Shen KP, J. Chem. Eng. Data, 38, 105, 1993
  14. An JR, Ma PF, Tang JF, Jiang X, Li J, Zhang GJ, Zhao MY, Chem. Ind. Eng. Prog., 35, 3866, 2016
  15. Glasscock DA, Rochelle GT, AIChE J., 39, 1389, 1993
  16. Mandal BP, Biswas A, Bandyopadhyay S, Sep. Purif. Technol., 35, 191, 2004
  17. Li M, Zhang S, Zhang P, Qin K, Xu B, Zhou J, Yuan C, Cao Q, Xiao H, Chem. Eng. J., 436, 135251, 2022
  18. Haghtalab A, Afsharpour A, Fluid Phase Equilib., 406, 10, 2015
  19. Savage DW, Funk EW, Yu WC, Astarita G, Ind. Eng. Chem. Fundam., 25, 326, 1986
  20. Kazemi A, Malayeri M, Kharaji AG, Shariati A, J. Nat. Gas Sci. Eng., 20, 16, 2014
  21. Abdulrahman RK, Sebastine IM, J. Nat. Gas Sci. Eng., 14, 116, 2013
  22. Tian XF, Wang LM, Fu D, Li C, Energy Fuels, 33, 629, 2019
  23. Tian XF, Wang LM, Fu D, Energy Fuels, 33, 8413, 2019
  24. Tian XF, Wang LM, Zhang P, Fu D, Wang ZY, Environ. Sci. Pollut. Res., 28, 5822, 2021
  25. Sidi-Boumedine R, Horstmann S, Fischer K, Provost E, Fürst W, Gmehling J, Fluid Phase Equilib., 218, 149, 2004
  26. Rebolledo-Libreros ME, Trejo A, Fluid Phase Equilib., 224, 83, 2004
  27. Xia JZ, Kamps A, Maurer G, Fluid Phase Equilib., 207, 23, 2003
  28. Speyer D, Böttger A, Maurer G, Ind. Eng. Chem. Res., 51, 12549, 2012
  29. Bi ZQ, Shen LS, Anhui Metallurgy, 2, 29, 2008
  30. Zhang BY, Jin DX, Sci. Technol. Baotou Steel Co., 2, 4, 2001
  31. Cai Z, Ma Y, Zhang J, Wu W, Cao Y, Jiang L, Huang K, Fuel, 313, 122664, 2022
  32. Cao Y, Zhang J, Ma Y, Wu W, Huang K, Jiang L, ACS Sustain. Chem. Eng., 9, 7352, 2021
  33. Giernoth R, Angew. Chem.-Int. Edit., 49, 2834, 2010
  34. Damanafshan M, Mokhtarani B, Mirzaei M, Mafi M, Sharifi A, Jalili AH, J. Chem. Eng. Data, 63, 2135, 2018
  35. Barati-Harooni A, Najafi-Marghmaleki A, Mohammadi AH, Int. J. Greenh. Gas Con., 63, 338, 2017
  36. Huang K, Zhang XM, Zhou LS, Tao DJ, Fan JP, Chem. Eng. Sci., 173, 253, 2017
  37. Liu F, Chen W, Mi J, Zhang JY, Kan X, Zhong FY, Huang K, Zheng AM, Jiang L, AIChE J., 65, e16574, 2019
  38. Nematpour M, Jalili AH, Ghotbi C, Rashtchian D, J. Nat. Gas Sci. Eng., 30, 583, 2016
  39. Wang LY, Xu YL, Li ZD, Wei YN, Wei JP, Energy Fuels, 32, 10, 2017
  40. Seyedhosseini B, Izadyar M, Housaindokht MR, J. Phys. Chem. A, 121, 4352, 2017
  41. Fu D, Zhang P, Mi CL, Energy, 101, 288, 2016
  42. Fu D, Xie JL, J. Chem. Thermodyn., 102, 310, 2016
  43. Zhou ZM, Jing GH, Zhou LJ, Chem. Eng. J., 204, 235, 2012
  44. Aparicio S, Atilhan M, Energy Fuels, 24, 4989, 2015
  45. Lee WY, Park SY, Lee KB, Nam SC, Energy Fuels, 34, 1992, 2020
  46. Lu JG, Zheng YF, He DL, Sep. Purif. Technol., 52, 209, 2006
  47. Jalili AH, Safavi M, Ghotbi C, Mehdizadeh A, Hosseini-Jenab M, Taghikhani V, J. Phys. Chem. B, 116, 2758, 2012
  48. Jalili AH, Shokouhi M, Maurer G, Hosseini-Jenab M, J. Chem. Thermodyn., 67, 55, 2013
  49. Shiflett MB, Niehaus AMS, Yokozeki A, J. Chem. Eng. Data, 55, 4785, 2010
  50. Huang K, Zhang XM, Xu Y, Wu YT, Hu XB, Xu Y, AIChE J., 60, 4232, 2014
  51. Shiflett MB, Yokozeki A, Fluid Phase Equilib., 294, 105, 2010