Issue
Korean Journal of Chemical Engineering,
Vol.39, No.11, 2959-2971, 2022
Hydrodynamics of gas-liquid and biophase-gas-liquid systems in stirred tanks of different scales
This research involves the influence of tank scale and, additionally, stirrer speed, the volumetric gas flow rate, the sucrose concentration in aqueous solution, and the yeast suspension concentration on the hydrodynamics of gas-liquid and gas-biophase-liquid systems. A stirred tank with internal diameters of T=0.288m, and T=0.634 m was filled with a liquid to the height H=T. For measurements, two high-speed stirrers were used: a Rushton turbine stirrer (RT) and A 315 stirrer. The study was carried out for gas-liquid and biophase-gas-liquid systems, where the biophase was a suspension of Saccharomyces cerevisiae yeast, the gas phase was air, and the liquid phase was an aqueous solution of sucrose. The gas hold-up and power consumption depend on the scale of the tank. The experimental results were mathematically described. Eqs. (14)-(18) do not have equivalents in the literature.
[References]
  1. Stręk F, Agitation and agitated vessels (in Polish), WNT, Warszawa (1981)
  2. Kamieński J, Agitation of multiphase systems (in Polish), WNT, Warszawa (2004).
  3. Adamiak R, Karcz J, Chem. Pap., 61, 16, 2007
  4. Gogate PR, Beenackers AACM, Pandit AB, Biochem. Eng. J., 6, 109, 2000
  5. Nocentini M, Fajner D, Pasquali G, Magelli F, Ind. Eng. Chem. Res., 32, 19, 1993
  6. Pinelli D, Nocentini M, Magelli F, IChemESymp., 136, 81, 1994
  7. Karcz J, Inż. Chem. i Proc., 19, 335, 1998
  8. Paglianti A, Takenaka K, Bujalski W, Takahashi K, Can. J. Chem. Eng., 78, 386, 2000
  9. Mueller SG, Dudukovic MP, Ind. Eng. Chem. Res., 49, 10744, 2010
  10. Busciglio A, Grisafi F, Scargiali F, Brucata A, Chem. Eng. Sci., 102, 551, 2013
  11. Wan X, Takahata Y, Takahashi K, Chem. Pap., 70, 445, 2016
  12. Jamshed A, Cooke M, Ren Z, Rodgers TL, Chem. Eng. Res. Des., 133, 55, 2018
  13. Vrábel P, van der Lans RGJM, Luyben KCCAM, Boon L, Nienow AW, Chem. Eng. Sci., 55, 5881, 2000
  14. Foucault S, Ascanio G, Tanguy PA, Chem. Eng. Technol., 27, 324, 2004
  15. Cabaret F, Fradette L, Tanguy PA, Chem. Eng. Technol., 31, 1806, 2008
  16. Zhu H, Nienow AW, Bujalski W, Simmons MJH, Chem. Eng. Res. Des., 87, 307, 2009
  17. Collignon ML, Delafosse A, Crine M, Toye D, Chem. Eng. Sci., 65, 5929, 2010
  18. Gelves R, Dietrich A, Takors R, Bioprocess. Biosyst. Eng., 37, 365, 2014
  19. Yang S, Li X, Deng G, Yang CH, Mao Z, Chin. J. Chem. Eng., 22, 1072, 2014
  20. Montante G, Paglianti A, Chem. Eng. J., 279, 648, 2015
  21. Liu B, Xiao Q, Sun N, Gao P, Fan F, Sunden B, Chem. Eng. Res. Des., 145, 314, 2019
  22. Qiu F, Liu Z, Liu R, Quan X, Tao CH, Wang Y, Chin. J. Chem. Eng., 27, 278, 2019
  23. Garcia-Ochoa F, Gomez E, Santos VE, Biochem. Eng. J., 164, 107803, 2020
  24. Jegatheeswaran S, Ein-Mozaffari F, Chem. Eng. J., 383, 123118, 2020
  25. Xiao Y, Li X, Ren S, Mao Z, Yang C, Chem. Eng. Sci., 227, 115923, 2020
  26. Jegatheeswaran S, Ein-Mozaffari F, Chem. Eng. Process., 156, 108091, 2020
  27. Amiraftabi M, Khiadani M, Mohammed HA, Arshad A, Sep. Purif. Technol., 272, 118855, 2021
  28. Maluta F, Paglianti A, Montante G, Biochem. Eng. J., 166, 107867, 2021
  29. Nadal-Rey G, McClure DD, Kavanagh JM, Cassells B, Cornelissen S, Fletcher DF, Gernaey KV, Biochem. Eng. J., 177, 108265, 2022
  30. Barros PA, Ein-Mozaffari F, Lohi A, Processes, 10, 275, 2022
  31. Khare AS, Niranjan K, Chem. Eng. Process., 43, 571, 2004
  32. Karcz J, Siciarz R, Inż. Chem. i Proc., 25, 1075, 2004
  33. Rao AR, Kumar B, Korean J. Chem. Eng., 25, 1338, 2008
  34. Chinnasamy G, Kaliannan S, Eldho A, Nadarajan D, Korean J. Chem. Eng., 33, 1181, 2016
  35. Li L, Wang J, Feng L, Gu X, Korean J. Chem. Eng., 34, 2811, 2017
  36. Petricek R, Moucha T, Rejl FJ, Valenz L, Haidl J, Cmelikova T, Int. J. Heat Mass Transf., 124, 1117, 2018
  37. Cudak M, Chem. Process. Eng., 41, 241, 2020
  38. Khare AS, Niranjan K, Chem. Eng. Sci., 54, 1093, 1999
  39. Vasconcelos JMT, Orvalho SCP, Rodrigues AMAF, Alves SS, Ind. Eng. Chem. Res., 39, 203, 2000
  40. Khare AS, Niranjan K, Chem. Eng. Process., 41, 239, 2002
  41. Yawalkar AA, Heesing ABM, Versteeg GF, Pangarkar VG, J. Chem. Eng., 80, 791, 2002
  42. Moucha T, Linek V, Prokopova E, Chem. Eng. Sci., 58, 1839, 2003
  43. Pinelli D, Bakker A, Myers KJ, Reeder MF, Magelli F, Chem. Eng. Res. Des., 81, 448, 2003
  44. Karcz J, Siciarz R, Bielka I, Chem. Pap., 58, 404, 2004
  45. Zhang L, Pan Q, Rempel GL, Ind. Eng. Chem. Res., 44, 5304, 2005
  46. Rudolph L, Schafer M, Atiemo-Obeng V, Kraume M, Chem. Eng. Res. Des., 85, 568, 2007
  47. Cudak M, Przem. Chem., 90, 1628, 2011
  48. Rahimi M, Amraei S, Alsairafi AA, Korean J. Chem. Eng., 28, 1372, 2011
  49. Major-Godlewska M, Karcz J, Chem. Pap., 65, 132, 2011
  50. Bao Y, Yang J, Chen L, Gao Z, Ind. Eng. Chem. Res., 51, 12411, 2012
  51. Cudak M, Chem. Process. Eng., 35, 97, 2014
  52. Xie M, Xia J, Zhou Z, Chu J, Zhuang Y, Zhang S, Ind. Eng. Chem. Res., 53, 5941, 2014
  53. Cudak M, Experimental and numerical analysis of transfer processes in a biophase-gas-liquid system in a bioreactor with an impeller (in Polish). BEL Studio Sp. z o.o., Warszawa (2016).
  54. Busciglio A, Opletal M, Moucha T, Montante G, Paglianti A, Chem. Eng. Trans., 57, 1273, 2017
  55. Major-Godlewska M, Radecki D, Pol. J. Chem. Tech., 20, 7, 2018
  56. Liu B, Zheng Y, Cheng R, Xu Z, Wang M, Jin Z, Chin. J. Chem. Eng., 26, 1785, 2018
  57. Jamshidzadeh M, Ein-Mozaffari F, Lohi A, AIChE J., 66, e17016, 2020
  58. Yawalkar AA, Pangarkar VG, Beenackers ACM, Can. J. Chem. Eng., 80, 158, 2002
  59. Vlaev SD, Valeva MD, Mann R, Chem. Eng. J., 87, 21, 2002
  60. Garcia-Ochoa F, Gomez E, Chem. Eng. Sci., 59, 2489, 2004
  61. Zhang L, Pan Q, Rempel GL, Chem. Eng. Sci., 61, 6189, 2006
  62. Li L, Xu B, Korean J. Chem. Eng., 33, 2007, 2016
  63. Khalili F, Nasr MRJ, Kazemzadeh A, Ein-Mozaffari F, J. Chem. Technol. Biotechnol., 93, 340, 2018
  64. Amiraftabi M, Khiadani M, Mohammed HA, Chem. Eng. Process., 148, 107811, 2020
  65. Jamshidzadeh M, Kazemzadeh A, Ein-Mozaffari F, Lohi A, Chem. Eng. J., 401, 126002, 2020
  66. Newell R, Grano S, Int. J. Miner. Process., 81, 224, 2007
  67. Khare AS, Niranjan K, Chem. Eng. Sci., 50, 1091, 1995
  68. Kawase Y, Shimizu K, Araki T, Shimodairam T, Ind. Eng. Chem. Res., 36, 270, 1997
  69. Dohi N, Matsuda Y, Itano N, Shimizu K, Minekawa K, Kawase Y, Chem. Eng. Commun., 171, 211, 1999
  70. Dohi N, Matsuda Y, Itano N, Minekawa K, Takahashi T, Kawase Y, Can. J. Chem. Eng., 79, 107, 2001
  71. Dohi N, Takahashi T, Minekawa K, Kawase Y, Chem. Eng. J., 97, 103, 2004
  72. Tervasmaki P, Latva-Kokko M, Taskila S, Tanskanen J, Food Bioprod. Process., 111, 129, 2018
  73. Kiełbus-Rąpała A, Karcz J, Chem. Pap., 64, 154, 2010
  74. Major-Godlewska M, Karcz J, Chem. Pap., 66, 566, 2012
  75. Devi TT, Kumar B, Thermophys. Aeromech., 21, 365, 2014
  76. Xia JY, Wang YH, Zhang SL, Chen N, Yin P, Zhung YP, Chu J, Biochem. Eng. J., 43, 252, 2009
  77. Karcz J, Cudak M, Szoplik J, Chem. Eng. Sci., 60, 2369, 2005
  78. Alves SS, Maia CI, Vasconcelos JMT, In proceedings of the 11th european conference on mixing, Bamberg, Germany (2003)
  79. Tatterson GB, Scaleup and design of industrial mixing processes, McGraw-Hill Inc., New York (1994).