Issue
Korean Journal of Chemical Engineering,
Vol.39, No.11, 3109-3120, 2022
Adsorption properties of β-carotene on mesoporous carbon-coated honeycomb monolith: Kinetics, thermodynamics, and regeneration studies
A facile synthesis procedure of mesoporous carbons coated monolith (MCCM) adsorbent was accomplished using furfuryl alcohol as carbon precursor, triblock copolymer Pluronic F-127 as the structure-directing agent, pyrrole as the binder for polymerization with nitric acid as catalyst and inorganic cordierite as substrate through dipcoating method. Surface chemistry revealed the dominance of acidic sites over adsorbents surface with the majority of active sites occupied by the phenolic and carboxylic groups. The MCCM adsorbent exhibited representative Type IV isotherm with a uniform-distributed PSD plot centered at 6.18 nm. A thermodynamics study involving Langmuir and Freundlich models was applied to establish the adsorption equilibrium data at temperatures of 30 to 50 ℃. The Freundlich model best described the experiment data with maximum adsorption capacity of β-carotene onto MCCM was 192.64mg/g. Three kinetic models, Lagergren first-order, pseudo-second-order and intra-particle diffusion models, were employed to investigate the adsorption mechanism of β-carotene molecules onto active surface sites of MCCM adsorbent. Both the Lagergren first-order and pseudo-second-order kinetic models fitted with experimental data with the latter described perfectly with higher regression coefficient value (R2>0.99). Intra-particle diffusion featured the involvement in β-carotene adsorption mechanism, but it was not the sole rate-limiting step. The negative value of Gibbs free energy change (ΔGo) suggested the spontaneity of β-carotene adsorption process. In contrast, the positive values of enthalpy change (ΔHo) and entropy change (ΔSo) demonstrated the endothermic nature and entropy-driven of the adsorption process, respectively. The increased ΔGo with T indicated an increased degree of spontaneity at high temperatures. Regeneration studies of MCCM adsorbent exemplified a slight decrease in adsorption capacities after three consecutive regeneration cycles.
[References]
  1. Sundram K, Sambanthamurthi R, Tan YA, Asia Pac. J. Clin. Nutr., 12, 355, 2003
  2. Lai OM, Phuah ET, Lee YY, Basiron Y, Palm Oil. Bailey’s industrial oil and fat products, John Wiley & Sons, New Jersey (2020).
  3. Liew KY, Yee AH, Nordin MR, J. Am. Oil Chem. Soc., 70, 539, 1993
  4. Ooi CK, Choo YM, Yap SC, Basiron Y, Ong ASH, J. Am. Oil Chem. Soc., 71, 423, 1994
  5. Baharin BS, Rahman KA, Karim MIA, Oyaizu T, Tanaka K, Tanaka Y, Takagi S, J. Am. Oil Chem. Soc., 75, 399, 1998
  6. Latip RA, Baharin BS, Man YBC, Rahman RA, J. Am. Oil Chem. Soc., 78, 83, 2001
  7. Tong J, Wu Z, Sun X, Xu X, Li C, Chin. J. Chem. Eng., 16, 270, 2008
  8. Ahmad AL, Chan CY, Shukor SRA, Mashitah MD, Chem. Eng. J., 148, 378, 2009
  9. Wu Z, Li C, J. Hazard. Mater., 171, 582, 2009
  10. Muhammad M, Choong TSY, Chuah TG, Yunus R, Yap YHT, Chem. Eng. J., 164, 178, 2010
  11. Kheok SC, Lim EE, J. Am. Oil Chem. Soc., 59, 129, 1982
  12. Falaras P, Kovanis I, Lezou F, Seiragakis G, Clay Min., 34, 221, 1999
  13. Low KS, Lee CK, Kong LY, J. Chem. Technol. Biotechnol., 72, 67, 1998
  14. Hussein MZB, Kuang D, Zainal Z, Teck TK, J. Colloid Interface Sci., 235, 93, 2001
  15. García-Bordejé E, Kapteijn F, Moulijn JA, Carbon, 40, 1079, 2002
  16. García-Bordejé E, Lázaro MJ, Moliner R, Álvarez PM, Gómez-Serrano V, Fierro JLG, Carbon, 44, 407, 2006
  17. Gierszal KP, Jaroniec M, J. Am. Oil Chem. Soc., 128, 10026, 2006
  18. Cheah W, Hosseini SK, Khan MA, Chuah TG, Choong TSY, Chem. Eng. J., 215, 747, 2013
  19. de Lathouder KM, Bakker J, Kreutzer MT, Kapteijn F, Moulijn JA, Wallin SA, Chem. Eng. Sci., 59, 5027, 2004
  20. Goertzen SL, Thériault KD, Oickle AM, Tarasuk AC, Andreas HA, Carbon, 48, 1252, 2010
  21. Hosseini S, Khan MA, Malekbala MR, Cheah W, Choong TSY, Chem. Eng. J., 171, 1124, 2011
  22. Wan Y, Cui X, Wen Z, J. Hazard. Mater., 198, 216, 2011
  23. Kruk M, Jaroniec M, Ko CH, Ryong R, Chem. Mater., 12, 1961, 2000
  24. Ryoo R, Joo SH, Kruk M, Jaroniec M, Adv. Mater., 13, 677, 2001
  25. Teoh YP, Khan MA, Choong TSY, Chem. Eng. J., 217, 248, 2013
  26. Jia YF, Thomas KM, Langmuir, 16, 1114, 2000
  27. Chen Y, Chen Q, Song L, Li HP, Hou FZ, Microporous Mesoporous Mater., 122, 7, 2009
  28. Hao GP, Li WC, Wang S, Wang GH, Qi L, Lu AH, Carbon, 49, 3762, 2011
  29. Tan IAW, Ahmad AL, Hameed BH, J. Hazard. Mater., 154, 337, 2008
  30. Langmuir I, J. Am. Oil Chem. Soc., 38, 2221, 1916
  31. McKay G, Bino MJ, Altamemi AR, Water Res., 19, 491, 1985
  32. Freundlich H, J. Phys. Chem., 57, 1100, 1906
  33. Fytianos K, Voudrias E, Kokkalis E, Chemosphere, 40, 3, 2000
  34. Kaynak G, Ersoz M, Kara H, J. Colloid Interface Sci., 280, 131, 2004
  35. Boki K, Kubo M, Kawasaki N, Mori H, J. Am. Oil Chem. Soc., 69, 372, 1992
  36. Boki K, Mori H, Kawasaki N, J. Am. Oil Chem. Soc., 71, 595, 1994
  37. Christidis GE, Kosiari S, Clay Clay Min., 51, 327, 2003
  38. Lagergren S, Sven. Vetenskapsakad. Handingarl., 24, 1, 1898
  39. Ho YS, McKay G, Water Res., 34, 735, 2000
  40. Weber Jr WJ, Morris JC, J. Sanitary Eng. Division, 89, 31, 1963
  41. Sarier N, Güler C, J. Am. Oil Chem. Soc., 65, 776, 1988
  42. Alkan M, Demirbaş O, Doğan M, Microporous Mesoporous Mater., 101, 388, 2007
  43. Argun ME, Dursun S, Ozdemir C, Karatas M, J. Hazard. Mater., 141, 77, 2007
  44. Tan IAW, Hameed BH, Ahmad AL, Chem. Eng. J., 127, 111, 2007
  45. Wu FC, Tseng RL, Juang RS, J. Colloid Interface Sci., 283, 49, 2005
  46. Srivastava VC, Mall ID, Mishra IM, J. Hazard. Mater., 134, 257, 2006
  47. Wang BE, Hu YY, Xie L, Peng L, Bioresour. Technol., 99, 794, 2008
  48. Sabah E, Çinar M, Çelik MS, Food Chem., 100, 1661, 2007
  49. Biswas AK, Sahoo J, Chatli MK, LWT - Food Sci. Technol., 44, 1809, 2011
  50. Zhang N, Qiu H, Si Y, Wang W, Gao J, Carbon, 49, 827, 2011