Issue
Korean Journal of Chemical Engineering,
Vol.39, No.11, 2883-2895, 2022
A review of formic acid decomposition routes on transition metals for its potential use as a liquid H2 carrier
Formic acid (HCOOH) has emerged as a promising H2 energy carrier due to its reasonable gravimetric and volumetric H2 densities, low toxicity, low flammability, and ease of handling. Its possible productions from biogenic feedstocks also make it an attractive source to produce H2 on demand. The utilization of HCOOH as a liquid H2 carrier requires catalytic systems to selectively dehydrogenate HCOOH at low temperatures without forming CO products that can act as a poison in fuel cell applications. In this review, we summarize the recent progress in understanding HCOOH decomposition via dehydrogenation (to CO2/H2) and dehydration (to CO/H2O) pathways on transition metals, including Cu, Pt, Pd, and Au. The focus is on discussing the surface chemistry of HCOOH reactions on transition metals, including the types of bound intermediates and the identity and kinetic relevance of elementary steps. In doing so, we review current catalyst design strategies for HCOOH dehydrogenation to facilitate the future development of catalytic processes for H2 storage/utilization.
[References]
  1. Borup R, Krause T, Brouwer J, J. Electrochem. Soc., 30, 79, 2021
  2. Kawanami H, Himeda Y, Laurenczy G, Adv. Inorg. Chem., 70, 395, 2017
  3. Mao WL, Mao HK, Proc. Natl. Acad. Sci. U. S. A., 101, 708, 2004
  4. Colόn YJ, Fairen-Jimenez D, Wilmer CE, Snurr RQ, J. Phys. Chem., 118, 5383, 2014
  5. Suh MP, Park HJ, Prasad TK, Lim DW, Chem. Rev., 112, 782, 2012
  6. Murray LJ, Dincă M, Long JR, Chem. Soc. Rev., 38, 1294, 2009
  7. Lim WX, Thornton AW, Hill AJ, Cox BJ, Hill JM, Hill MR, Langmuir, 29, 8524, 2013
  8. Viswanathan B, Energy Sources, 185, 2017
  9. Andersson J, Grönkvist S, Int. J. Hydrog. Energy, 44, 11901, 2019
  10. Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE, PubChem, 49, 971, 2022
  11. Guo J, Yin CK, Zhong DL, Wang YL, Qi T, Liu GH, Shen LT, Zhou QS, Peng ZH, Yao H, Li ZB, Chem. Sus. Chem., 14, 2655, 2021
  12. Kothandaraman J, Kar S, Sen R, Goeppert A, Olah GA, Prakash GKS, J. Am. Chem. Soc., 139, 2549, 2017
  13. Aziz M, Oda T, Kashiwagi T, Energy Procedia, 158, 4086, 2019
  14. Aziz M, Wijayanta AT, Nandiyanto ABD, Energies, 13, 3062, 2020
  15. Sanchez F, Motta D, Roldan A, Hammond C, Villa A, Dimitratos N, Top. Catal., 61, 254, 2018
  16. Ahn Y, Byun J, Kim D, Kim BS, Lee CS, Han J, Green Chem., 21, 3442, 2019
  17. Vermaak L, Neomagus HWJP, Bessarabov DG, Membranes, 11, 670, 2021
  18. Hoshi N, Kida K, Nakamura M, Nakada M, Osada K, J. Phys. Chem. B, 110, 12480, 2006
  19. Hu S, Munoz F, Noborikawa J, Haan J, Scudiero L, Ha S, Appl. Catal. B: Environ., 180, 758, 2016
  20. Hu S, Scudiero L, Ha S, Electrochem. Commun., 38, 107, 2014
  21. Yang J, Yang S, Chung Y, Kwon Y, Korean J. Chem. Eng., 37, 176, 2020
  22. Rahbari A, Ramdin M, van de Broeke LJP, Vlugt TJH, Ind. Eng. Chem. Res., 57, 10663, 2018
  23. Yoo JS, Abild-Pedersen F, Nørskov JK, Studt F, ACS Catal., 4, 1226, 2014
  24. Bowker M, Rowbotham E, Leibsle FM, Haq S, Surf. Sci., 349, 97, 1996
  25. Bowker M, Haq S, Holroyd R, Parlett PM, Poulston S, Richardson N, J. Chem. Soc.-Faraday Trans., 92, 4683, 1996
  26. Shiozawa Y, Koitaya T, Mukai K, Yoshimoto S, Yoshinobu J, J. Chem. Phys., 143, 234707, 2015
  27. Ying DHS, Madix RJ, J. Catal., 61, 48, 1980
  28. Hayden BE, Prince K, Woodruff DP, Bradshaw AM, Surf. Sci., 133, 589, 1983
  29. Dubois LH, Ellis TH, Zegarski BR, Kevan SD, Surf. Sci., 172, 385, 1986
  30. Madix RJ, Telford SG, Surf. Sci., 277, 246, 1992
  31. Yao Y, Zaera F, Surf. Sci., 646, 37, 2016
  32. Li S, Scaranto J, Mavrikakis M, Top. Catal., 59, 1580, 2016
  33. Chen BWJ, Mavrikakis M, ACS Catal., 10, 10812, 2020
  34. Iglesia E, Boudart M, J. Phys. Chem., 90, 5272, 1986
  35. Lin TC, Torre UDL, Hejazi A, Kwon S, Iglesia E, J. Catal., 404, 814, 2021
  36. Iglesia E, Boudart M, J. Catal., 81, 214, 1983
  37. Tang Y, Roberts CA, Perkins RT, Wachs IE, Surf. Sci., 650, 103, 2016
  38. Jensen MB, Myler U, Thiel PA, Surf. Sci. Lett., 290, L655, 1993
  39. Avery NR, Appl. Surf. Sci., 11, 774, 1982
  40. Abbas N, Madix RJ, Appl. Surf. Sci., 16, 424, 1983
  41. Scaranto J, Mavrikakis M, Surf. Sci., 648, 201, 2016
  42. Herron JA, Scaranto J, Ferrin P, Li S, Mavrikakis M, ACS Catal., 4, 4434, 2014
  43. Ojeda M, Iglesia E, Angew. Chem.-Int. Edit., 48, 4800, 2009
  44. Columbia MR, Thiel PA, Surf. Sci., 235, 53, 1990
  45. Becker E, Skoglundh M, Andersson M, Spetz AL, IEEE Sensors (2007).
  46. Columbia MR, Crabtree AM, Thiel PA, J. Electroanal. Chem., 345, 93, 1993
  47. Bhandari S, Rangarajan S, Maravelias CT, Dumesic JA, Mavrikakis M, ACS Catal., 10, 4112, 2020
  48. Kim Y, Kim S, Ham HC, Kim DH, J. Catal., 389, 506, 2020
  49. Li J, Chen W, Zhao H, Zheng X, Wu L, Pan H, Zhu J, Chen Y, Lu J, J. Catal., 352, 371, 2017
  50. Jones S, Kolpin A, Tsang SCE, Catal. Struct. React., 1, 19, 2014
  51. Kim Y, Lee H, Yang S, Lee J, Kim H, Hwang S, Jeon SW, Kim DH, J. Catal., 404, 324, 2021
  52. Hu C, Pulleri JK, Ting SW, Chan KY, Int. J. Hydrog. Energy, 39, 381, 2014
  53. Bulut A, Yurderi M, Karatas Y, Zahmakiran M, Kivrak H, Gulcan M, Kaya M, Appl. Catal. B: Environ., 164, 324, 2015
  54. Jorgensen SW, Madix RJ, J. Am. Chem. Soc., 110, 397, 1988
  55. Davis JL, Barteau MA, Surf. Sci., 256, 50, 1991
  56. Scaranto J, Mavrikakis M, Surf. Sci., 650, 111, 2016
  57. Zhang R, Liu H, Wang B, Ling L, J. Phys. Chem. C, 116, 22266, 2012
  58. Li S, Rangarajan S, Scaranto J, Mavrikakis M, Surf. Sci., 709, 121846, 2021
  59. Wang Y, Qi Y, Zhang D, Comput. Theor. Chem., 1049, 51, 2014
  60. Jiang K, Xu K, Zou S, Cai WB, J. Am. Chem. Soc., 136, 4861, 2014
  61. Zhu QL, Tsumori N, Xu Q, J. Am. Chem. Soc., 137, 11743, 2015
  62. Song FZ, Zhu QL, Tsumori N, Xu Q, ACS Catal., 5, 5141, 2015
  63. Ruthven DM, Upadhye RS, J. Catal., 21, 39, 1971
  64. Kim Y, Kim DH, Appl. Catal. B: Environ., 244, 684, 2019
  65. Zhou X, Huang Y, Xing W, Liu C, Liao J, Lu T, Chem. Commun., 30, 3540, 2008
  66. Huang Y, Zhou X, Yin M, Liu C, Xing X, Chem. Mater., 22, 5122, 2010
  67. Zhang S, Metin O, Su D, Sun S, Angew. Chem.-Int. Edit., 52, 3681, 2013
  68. Mandal K, Bhattacharjee D, Dasgupta S, Int. J. Hydrog. Energy, 40, 4786, 2015
  69. Gazsi A, Bánsági T, Solymosi F, J. Phys. Chem. C, 115, 15459, 2011
  70. Singh S, Li S, Carrasquillo-Flores R, Alba-Rubio AC, Dumesic JA, Mavrikakis M, AIChE J., 60, 1303, 2014
  71. Chen BWJ, Stamatakis M, Mavrikakis M, ACS Catal., 9, 9446, 2019
  72. Deng QF, Zhang ZF, Cui FJ, Jia LH, Int. J. Hydrog. Energy, 42, 14865, 2017
  73. Bi QY, Lin JD, Liu YM, He HY, Huang FQ, Cao Y, Angew. Chem.-Int. Edit., 55, 11849, 2016
  74. Bi QY, Lin JD, Liu YM, He HY, Huang FQ, Cao Y, J. Power Sources, 328, 463, 2016
  75. Xu LX, Yao F, Luo JL, Wan C, Ye MF, Cui P, An Y, RSC Adv., 7, 4746, 2017
  76. Qin Y, Wang J, Meng F, Wang L, Zhang X, Chem. Commun., 49, 10028, 2013
  77. Mars P, Scholten JJF, Zwietering P, Adv. Catal., 14, 35, 1963
  78. Trillo JM, Munuera G, Criado JM, Catal. Rev.-Sci. Eng., 7, 51, 1972
  79. Noto Y, Fukuda K, Onishi T, Tamaru K, Trans. Faraday Soc., 63, 3081, 1967
  80. Fukuda K, Noto Y, Onishi T, Tamaru K, Trans. Faraday Soc., 63, 3072, 1967
  81. Kwon S, Lin TC, Iglesia E, J. Phys. Chem. C, 124, 20161, 2020
  82. Rajadurai S, Catal. Rev.-Sci. Eng., 36, 385, 1994
  83. Álvarez A, Bansode A, Urakawa A, Bavykina AV, Wezendonk TA, Makkee M, Gascon J, Kapteijn F, Chem. Rev., 117, 9804, 2017
  84. Zhao G, Huang X, Wang X, Wang X, J. Mater. Chem. A, 5, 21625, 2017
  85. Whang HS, Lim J, Choi MS, Lee J, Lee H, BMC Chem. Eng., 1, 9, 2019
  86. Sun R, Liao Y, Bai ST, Zheng M, Zhou C, Zhang T, Sels BF, Energy Environ. Sci., 14, 1247, 2021
  87. Yan N, Philippot K, Curr. Opin. Chem. Eng., 20, 86, 2018
  88. Onishi N, Iguchi M, Yang X, Kanega R, Kawanami H, Xu Q, Himeda Y, Adv. Energy Mater., 9, 1801275, 2019
  89. Chen X, Liu Y, Wu J, Mol. Catal., 483, 110716, 2020