Issue
Korean Journal of Chemical Engineering,
Vol.39, No.11, 2896-2906, 2022
Fluid dynamics, velocity profile and average cycle time in different configurations of the modified mechanically stirred spouted bed
We analyzed modified spouted bed configurations incorporating three different types of mechanical stirrer, in comparison to a conventional spouted bed. Straight-blade, inclined-blade, and helical screw agitators were used with different types of inert particles. The behavior of the fluid dynamic curves was qualitatively similar for the systems with agitators and the conventional design, except for the screw-type agitator. For the straight-blade and inclinedblade agitators, increase of the rotation speed had a positive effect on the fluid dynamic parameters, reducing the air flow and the pressure drop in the bed. The effects of rotation speed and blade inclination on the fluid dynamics were minimized at 240 rpm, although the mass of particles could influence these parameters. The inclined-blade stirrer performed the best, reducing airflow between 40 and 66% compared to the conventional spouted bed. For the screw-type stirrer, the reduction was around 27% in some of the experiments. The rotation speed of the stirrer and the air flow to agitate the bed affect the average cycle time of the process, with a stronger effect on the rotation speed. Overall, the use of the stirrers in the bed provided significant improvement, with reduction of both the air flow, the pressure drop and average cycle time, as well as greater stability of the bed.
[References]
  1. Mathur KB, Gishler PE, Spouted bed, New York (1974).
  2. Freire JT, Ferreira MC, Freire FB, Nascimento BS, Dry. Technol., 30, 330, 2012
  3. Passos ML, Massarani G, Freire JT, Mujumdar AS, Dry. Technol., 15, 605, 1997
  4. Rocha APT, Lisboa HM, Alsina OLS, Silva OS, Powder Technol., 336, 85, 2018
  5. Liu M, Chen Z, Chen M, Shao Y, Liu B, Tang Y, Nucl. Eng. Des., 357, 110413, 2020
  6. Wolff MFH, Salikov V, Antonyuk S, Heinrich S, Schneider GA, Compos. Sci. Technol., 90, 154, 2014
  7. Sousa LM, Ferreira MC, Chem. Eng. Res. Des., 160, 31, 2020
  8. Yang S, Dong R, Du Y, Wang S, Wang H, Energy, 214, 118839, 2021
  9. Martins R, Britto-Costa PH, Ruotolo LAM, Environ. Technol., 33, 1123, 2012
  10. Bilbao J, Olazar M, Romero A, Arandes JM, Ind. Eng. Chem. Res., 26, 1297, 1987
  11. Azizi K, Moraveji MK, Arregi A, Amutio M, Lopez G, Olazar M, Bioresour. Technol., 311, 123561, 2020
  12. Barcelos KM, Almeida PS, Araujo MS, Xavier TP, Santos KG, Bacelos MS, Lira TS, Biomass Bioenerg., 138, 105592, 2020
  13. de Medeiros FGM, Machado IP, Dantas TNP, Dantas SCM, de Alsina OLS, de Medeiros MFD, a Case Study on Drying of Graviola (Annona muricata), de LA Delgado B, J. (Ed.), Springer (2021).
  14. Barros JPAA, Ferreira MC, Freire JT, Ferreira MC, Dry. Technol., 38, 1709, 2019
  15. Brito RC, Zacharias MB, Forti VA, Freire JT, Dry. Technol., 39, 820, 2020
  16. Batista JNM, Santos DA, Béttega R, Particuology, 54, 91, 2021
  17. Souza CRF, Oliveira WP, Braz. J. Chem. Eng., 22, 239, 2005
  18. Barret N, Fane A, Drying Liquid Materials in a Spouted Bed (1990).
  19. Szentmarjay T, Pallai E, Tóth J, Mechanical spouting, Spouted Spouted-Fluid Beds Fundam. Appl., Cambridge University Press, New York, 297 (2011).
  20. Passos ML, Mujumdar AS, Vijaya G, Raghavan VGS, Dry. Technol., 7, 663, 1989
  21. Puspasari I, Zainal M, Talib M, Ramli W, Daud W, Tasirin SM, Puspasari I, Zainal M, Talib M, Ramli W, Daud W, Dry. Technol., 30, 619, 2012
  22. Bait RG, Pawar SB, Banerjee AN, Mujumdar AS, Thorat BN, Dry. Technol., 29, 808, 2011
  23. Reyes A, Díaz G, Marquardt FH, Dry. Technol., 19, 2235, 2001
  24. Reed III T, Fenske M, Ind. Eng. Chem., 47, 275, 1955
  25. Olazar M, José MJS, Aguayo AT, Arandes JM, Bilbao J, Ind. Eng. Chem. Res., 31, 1784, 1992
  26. Olazar M, José MJS, Aguado R, Gaisán B, Bilbao J, Ind. Eng. Chem. Res., 38, 4120, 1999
  27. Estiati I, Tellabide M, Saldarriaga JF, Altzibar H, Olazar M, Powder Technol., 356, 193, 2019
  28. Karimi M, Vaferi B, Hosseini SH, Olazar M, Rashidi S, Particuology, 55, 179, 2021
  29. Saldarriaga JF, Estiati I, Atxutegi A, Aguado R, Bilbao J, Olazar M, Ind. Eng. Chem. Res., 58, 1932, 2019
  30. Hosseini SH, Rezaei MJ, Bag-Mohammadi M, Altzibar H, Olazar M, Chem. Eng. Res. Des., 138, 331, 2018
  31. Reyes A, Vidal I, Dry. Technol., 18, 341, 2000
  32. de A Barros JPA, Brito RC, Freire FB, Freire JT, Ind. Eng. Chem. Res., 59, 16396, 2020
  33. Szentmarjay T, Pallai E, Dry. Technol., 7, 523, 1989
  34. Németh J, Pallai E, Aradi E, Can. J. Chem. Eng., 61, 419, 1983
  35. Szentmarjay T, Szalay A, Pallai I, Hungarian J. Ind. Chem. Veszprém., 20, 219, 1992
  36. Németh J, Pallai E, Péter M, Toros R, Can. J. Chem. Eng., 61, 406, 1983
  37. Kudra T, Pallai E, Bartczaki Z, Peter M, Dry. Technol., 7, 583, 2007
  38. Sousa RC, Ferreira MC, Altzibar H, Freire FB, Freire JT, Particuology, 42, 176, 2019
  39. Brito RC, Sousa RC, Béttega RF, Freire FB, Freire JT, Chem. Eng. Process., 130, 1, 2018
  40. Vieira GNA, Freire FB, Freire JT, Dry. Technol., 33, 1920, 2015
  41. Geldart D, Powder Technol., 7, 285, 1973
  42. Mathur KB, Epstein N, Spouted beds, Academic Press, New York (1974).
  43. Mamuro T, Hattori H, J. Chem. Eng. Jpn., 1, 1, 1968
  44. Altzibar H, Lopez G, Bilbao J, Olazar M, Can. J. Chem. Eng., 91, 1865, 2013
  45. Estiati I, Altzibar H, Tellabide M, Olazar M, Powder Technol., 316, 87, 2017