Issue
Korean Journal of Chemical Engineering,
Vol.39, No.11, 2945-2958, 2022
Bubble behavior and nucleation site density in subcooled flow boiling using a novel method for simulating the microstructure of surface roughness
The wall boiling model in the current research is used to predict the bubble dynamics treatment in flow boiling in a vertical pipe. A random surface roughness is developed for simulating the surface roughness effects in subcooled flow boiling as a novel method. This novel method is called direct roughness simulation (DRS). The DRS results are compared to the smooth surface (SS) and surface roughness model (SRM). The SRM is the traditional way of simulating surface roughness. The finite volume methods and Euler-Euler are applied to investigate subcooled flow boiling. The turbulence stresses are simulated by the k-ε model. The surface roughness effect on bubble dynamics for flow boiling is investigated numerically. According to the numerical simulations, nucleation site density is only increased by augmentation of heat flux. In contrast, increasing surface roughness, pressure, mass flux, and subcooled temperature cause a drop in nucleation site density. The bubble detachment waiting time and bubble departure diameter increase with the rise in pressure; however, by increasing other boundary conditions, these two parameters decrease. Results show that the reduction in the nucleation site density at outlet was 28.05% for the DRS and 25.5% for the SRM compared to the SS. The bubble detachment frequency at oulet 2.04% decreases when using the SRM and 6.5% increases when using the DRS.Compared to the SS; the bubble departure diameter at outlet 4.3% increases when using the SRM and 11.8% decreases when using the DRS.
[References]
  1. Bozorgnezhad A, Shams M, Ahmadi G, Kanani H, Hasheminasab M, The experimental study of water accumulation in PEMFC cathode channel (2015).
  2. Hasheminasab M, Bozorgnezhad A, Shams M, Ahmadi G, Kanani H, Simultaneous investigation of PEMFC performance and water content at different flow rates and relative humidities (2014).
  3. Bozorgnezhad A, Shams M, Kanani H, Hasheminasab M, J. Dispersion Sci. Technol., 36, 1190, 2015
  4. Hibiki T, Ishii M, J. Comput. Multiph. Flows, 1, 1, 2009
  5. Klausner JFF, Mei R, Bernhard DMM, Zeng LZZ, Int. J. Heat Mass Transf., 36, 651, 1993
  6. Thorncroft GE, Klausnera JF, Mei R, Int. J. Heat Mass Transf., 41, 3857, 1998
  7. Brooks CS, Ozar B, Hibiki T, Ishii M, Nucl. Eng. Des., 268, 152, 2014
  8. Alimoradi H, Shams M, Ashgriz N, Bozorgnezhad A, Case Stud. Therm. Eng., 04, 100829, 2021
  9. Prabhudharwadkar D, de Bertodano MAL, Buchanan Jr J, Vaidheeswaran A, In International Heat Transfer Conference, 49361, 655, 2010
  10. Ishii M, Hibiki T, Thermo-fluid dynamics of two-phase flow, Springer Science & Business Media (2010).
  11. Jakob M, Kezios SP, Heat Transfer., 2, 1949
  12. Mikic BB, Rohsenow WM, Griffith P, Int. J. Heat Mass Transf., 13, 657, 1970
  13. Hsu YY, Graham RW, Transport processes in boiling and two-phase systems, including near-critical fluids, Hemisphere Pub. Corp., Washington (1976).
  14. Gaertner RF, Westwater JW, Chem. Eng. Prog., 56, 39, 1960
  15. Yang SRR, Kim RHH, Int. J. Heat Mass Transf., 31, 1127, 1988
  16. Kocamustafaogullari G, Ishii M, Int. J. Heat Mass Transf., 26, 1377, 1983
  17. Hibiki T, Ishii M, Int. J. Heat Mass Transf., 46, 2587, 2003
  18. Basu N, Warrier GR, Dhir VK, J. Heat Transf. -Trans. ASME, 124, 717, 2002
  19. Brooks CS, Silin N, Hibiki T, Ishii M, J. Heat Transf. -Trans. ASME, 5, 137, 2015
  20. Parahovnik A, Peles Y, Int. J. Heat Mass Transf., 183, 122191, 2022
  21. Bhati J, Paruya S, Nucl. Eng. Des., 371, 110945, 2021
  22. Mukherjee A, Basu DN, Mondal PK, Int. J. Multiph. Flow, 148, 103923, 2022
  23. Khoshnevis A, Sarchami A, Ashgriz N, Appl. Therm. Eng., 135, 280, 2018
  24. Alimoradi H, Shams M, Appl. Therm. Eng., 111, 1039, 2017
  25. Alimoradi H, Shams M, Valizadeh Z, Modares Mech. Eng., 16, 545, 2017
  26. Zolfagharnasab MH, Salimi M, Zolfagharnasab H, Alimoradi H, Shams M, Aghanajafi C, Powder Technol., 380, 1, 2021
  27. Alimoradi H, Shams M, Modares Mech. Eng., 19, 1613, 2019
  28. Roodbari M, Alimoradi H, Shams M, Aghanajafi C, J. Therm. Anal. Calorim., 147(4), 3283, 2022
  29. Alimoradi H, Zaboli S, Shams M, Korean J. Chem. Eng., 39, 69, 2022
  30. Zaboli S, Alimoradi H, Shams M, J. Therm. Anal. Calorim., 147, 1, 2022
  31. Chen A, Lin TF, Ali HM, Yan WM, Int. J. Heat Mass Transf., 157, 119974, 2020
  32. Mohammed HI, Giddings D, Int. J. Therm. Sci., 146, 106099, 2019
  33. Mohammed HI, Giddings D, Walker GS, Int. J. Heat Mass Transf., 125, 218, 2018
  34. Mohammed HI, Giddings D, Walker GS, Int. J. Heat Mass Transf., 130, 710, 2019
  35. Mohammed HI, Giddings D, Walker GS, Int. J. Heat Mass Transf., 134, 1159, 2019
  36. Lemmert M, Chawla JM, Heat Transf. Boil., 237, 247, 1977
  37. Cole R, AIChE J., 6, 533, 1960
  38. Tolubinsky VI, Kostanchuk DM, in International Heat Transfer Conference, 23, 4, 1970
  39. Kurul N, Michael Z, Podowski. In International Heat Transfer Conference Digital Library (1990).
  40. Krepper E, Rzehak R, Nucl. Eng. Des., 241, 3851, 2011
  41. Krepper E, Rzehak R, Lifante C, Frank T, Nucl. Eng. Des., 255, 330, 2013
  42. Krepper E, Končar B, Egorov Y, Nucl. Eng. Des., 237, 716, 2007
  43. Bartolomei GG, Brantov VG, Molochnikov YS, Kharitonov YV, Solodkii VA, Batashova GN, Mikjailov VN, Therm. Eng., 29, 132, 1982
  44. White FM, Majdalani J, Viscous fluid flow, vol. 3. McGraw- Hill New York (2006).
  45. Schlichting H, Gersten K, Boundary-layer theory, Springer (2016).
  46. Setoodeh H, Keshavarz A, Ghasemian A, Nasouhi A, Appl. Therm. Eng., 90, 384, 2015
  47. McHale JP, Garimella SV, Exp. Therm. Fluid Sci., 44, 439, 2013
  48. Zhou P, Huang R, Huang S, Zhang Y, Rao X, Int. J. Heat Mass Transf., 149, 119105, 2020
  49. Ren T, Zhu Z, Yan M, Shi J, Yan C, Int. J. Heat Mass Transf., 144, 118670, 2019
  50. Sugrue R, Buongiorno J, McKrell T, Nucl. Eng. Des., 279, 182, 2014
  51. Rousselet YL, Interacting effects of inertia and gravity on bubble dynamics, University of California, Los Angeles (2014).
  52. Lie YM, Lin TF, Int. J. Heat Mass Transf., 49, 2077, 2006