Issue
Korean Journal of Chemical Engineering,
Vol.39, No.11, 3165-3176, 2022
Experimental and numerical simulation study on the hydrodynamic characteristics of spherical and irregular-shaped particles in a 3D liquid-fluidized bed
Recently, the fluidized bed has been shown to assist in improving the recovery of coarse minerals during flotation. In this study, the fluidization characteristics of spherical and irregular particles in a three-dimensional liquidsolid fluidized bed were studied by combining experimental and computational fluid dynamics (CFD) methods. Fluidization experiments were performed to investigate the effect of superficial velocity, particle shape, and particle size on solid holdup and bed expansion height. CFD model coupled different drag models for spherical and irregular particles were developed and validated by the experimental data of bed expansion ratio and pressure drop. Based on 3D CFD simulations, the axial and radial direction distributions of solid holdup, axial velocity, as well as granular temperature were obtained. Their distribution characteristics were analyzed and discussed in detail. The reported experimental data and simulation results can improve the understanding of irregular granular liquid-solid fluidized bed and provide a basis for further research on fluidized bed flotation.
[References]
  1. Epstein N, Int. J. Chem. React. Eng., 1, 2002
  2. Jameson GJ, Cooper L, Tang KK, Emer C, Miner. Eng., 146, 2020
  3. Liu B, Li X, Li Z, Sui H, Li H, Chem. Eng. Res. Des., 94, 501, 2015
  4. Shun D, Shin JS, Bae DH, Ryu HJ, Park J, Korean J. Chem. Eng., 34, 3125, 2017
  5. Lee HW, Jeong H, Ju YM, Lee SM, Korean J. Chem. Eng., 37, 1174, 2020
  6. Lu LQ, Yoo K, Benyahia S, Ind. Eng. Chem. Res., 55, 10477, 2016
  7. Sowmeyan R, Swaminathan G, Bioresour. Technol., 99, 6280, 2008
  8. Qureshi KM, Lup ANK, Khan S, Abnisa F, Daud WMAW, Korean J. Chem. Eng., 38, 1797, 2021
  9. Georges-Filteau D, Bouchard J, Desbiens A, IFAC-PapersOn-Line, 52, 66, 2019
  10. Fosu S, Awatey B, Skinner W, Zanin M, Miner. Eng., 77, 137, 2015
  11. Kohmuench JN, Mankosa MJ, Thanasekaran H, Hobert A, Miner. Eng., 121, 137, 2018
  12. Kohmuench JN, Mankosa MJ, Yan ES, Wyslouzil H, Christodoulou L, 2065 (2010).
  13. Awatey B, Thanasekaran H, Kohmuench JN, Skinner W, Zanin M, Miner. Eng., 50, 99, 2013
  14. Cheng TW, Holtham PN, Miner. Eng., 8, 883, 1995
  15. Soto H, Barbery G, Mining Metall. Explor., 8, 16, 1991
  16. Ghatage SV, Peng Z, Sathe MJ, Doroodchi E, Padhiyar N, Moghtaderi B, Joshi JB, Evans GM, Chem. Eng. J., 256, 169, 2014
  17. Tripathy A, Bagchi S, Biswal SK, Meikap BC, Chem. Eng. Res. Des., 117, 520, 2017
  18. Tripathy A, Sahu AK, Biswal SK, Mishra BK, Particuology, 11, 789, 2013
  19. Kramer OJI, de Moel PJ, Padding JT, Baars ET, Hasadi YMFE, Boek ES, van der Hoek JP, J. Water Process Eng., 37, 101481, 2020
  20. Kramer OJI, Padding JT, van Vugt WH, de Moel PJ, Baars ET, Boek ES, van der Hoek JP, Int. J. Multiph. Flow, 127, 2020
  21. Peng J, Sun W, Han H, Xie L, Minerals, 11, 569, 2021
  22. Cornelissen JT, Taghipour F, Escudie R, Ellis N, Grace JR, Chem. Eng. Sci., 62, 6334, 2007
  23. Liu G, Wang P, Lu H, Yu F, Zhang Y, Wang S, Sun L, Particuology, 25, 42, 2016
  24. Luo H, Zhang C, Zhu J, Powder Technol., 348, 93, 2019
  25. Pang B, Wang S, Chen W, Hassan M, Lu H, Powder Technol., 366, 249, 2020
  26. Lau PW, Utikar R, Pareek V, Johnson S, Kale S, Lali A, Chem. Eng. Res. Des., 91, 1660, 2013
  27. He Y, Yan S, Wang T, Jiang B, Huang Y, Powder Technol., 287, 264, 2016
  28. Zhu HP, Zhou ZY, Yang RY, Yu AB, Chem. Eng. Sci., 63, 5728, 2008
  29. Armstrong LM, Gu S, Luo KH, Int. J. Heat Mass Transf., 53, 4949, 2010
  30. Loha C, Chattopadhyay H, Chatterjee PK, Chem. Eng. Sci., 75, 400, 2012
  31. Lu H, Yurong H, Gidaspow D, Chem. Eng. Sci., 58, 1197, 2003
  32. Neri A, Gidaspow D, AIChE J., 46, 52, 2000
  33. Wang J, Ge W, Li J, Chem. Eng. Sci., 63, 1553, 2008
  34. Dioguardi F, Dellino P, Mele D, Powder Technol., 260, 68, 2014
  35. Hua L, Zhao H, Li J, Wang J, Zhu Q, Powder Technol., 284, 299, 2015
  36. Lun CKK, Savage SB, Jeffrey DJ, Chepurniy N, J. Fluid Mech., 140, 223, 1984
  37. Menter FR, AIAA J., 32, 1598, 1994
  38. Gidaspow D, Multiphase flow and fluidization: continuum and kinetic theory descriptions, Academic press, New York (1994).
  39. Wen CY, Chem. Eng. Prog. Symp. Ser., 62, 100, 1962
  40. Ergun S, Chem. Eng. Prog., 48, 89, 1952
  41. Haider A, Levenspiel O, Powder Technol., 58, 63, 1989
  42. Moraga FJ, Bonetto FJ, Lahey RT, Int. J. Multiph. Flow, 25, 1321, 1999
  43. Johnson PC, Jackson R, J. Fluid Mech., 176, 67, 1987
  44. Avidan AA, Yerushalmi J, Powder Technol., 32, 223, 1982
  45. Singh A, Verma R, Kishore K, Verma N, Chem. Eng. Process., 47, 957, 2008
  46. Romeo LM, Díez LI, Guedea I, Bolea I, Lupiáñez C, González A, Pallarés J, Teruel E, Exp. Therm. Fluid Sci., 35, 477, 2011
  47. Rahaman MS, Mavinic DS, Ellis N, J. Environ. Eng. Sci., 9, 137, 2014
  48. Ye Z, Shen Y, Ye X, Zhang Z, Chen S, Shi J, J. Environ. Sci., 26, 991, 2014
  49. Peng J, Sun W, Xie L, Han H, Xiao Y, Minerals, 12, 2022
  50. Islam MT, Nguyen AV, Miner. Eng., 134, 716, 2019
  51. IslamIslam MT, Nguyen AV, Chem. Eng. Res. Des., 159, 13, 2020
  52. Liu G, Wang P, Wang S, Sun L, Yang Y, Xu P, Adv. Powder Technol., 24, 537, 2013