Issue
Korean Journal of Chemical Engineering,
Vol.39, No.12, 3315-3322, 2022
Performance evaluation of zero-gap vanadium redox flow battery using composite electrode consisting of graphite and buckypaper
A composite electrode consisting of graphite felt and buckypaper (GF-BP) was developed. GF-BP is used for fabricating a zero-gap structure for all-vanadium redox flow battery (VRFB), which minimizes the distance between two electrodes. With this zero-gap structure, performance of VRFBs is improved, while its flexible design becomes possible. GF and BP are used as base and reinforced materials to combine the proper porous structure of GF and the excellent redox reactivity of vanadium ions promoted by BP. The properties of GF-BP electrode and its applicability to VRFB were evaluated electrochemically and spectroscopically. As a result, its total pore volume and double layer capacitance (0.200 cm3 g-1, 1,547.95mF g-1) are higher than those of pristine GF electrode (0.040 cm3 g-1, 94.59 mF g-1). When the optimized GF-BP electrode and zero-gap structure are adopted, performance of the zero-gap VRFB using the optimized GF-BP electrode is excellent with energy efficiency (EE) of 60% and discharge capacity of 14.6 Ah L-1 at 160 mA cm-2, while the EE (67.8%) is 20% better than that using pristine GF electrode (72.4%) at 120mA cm-2. The significant increase in actual active sites of the optimized GF-BP electrode is the main reason for the performance enhancement of the zero-gap VRFB using this.
[References]
  1. Hyun K, Kim S, Kwon Y, Korean J. Chem. Eng., 38, 2347, 2021
  2. Lee W, Jo C, Youk S, Shin HY, Lee J, Chung Y, Kwon Y, Appl. Surf. Sci., 429, 187, 2018
  3. Basit MA, Dilshad S, Badar R, ur Rehman SMS, Int. J. Energy Res., 44, 4132, 2020
  4. Shin M, Noh C, Chung Y, Kim DH, Kwon Y, Appl. Surf. Sci., 550, 148977, 2021
  5. Mahmoud M, Ramadan M, Olabi AG, Pullen K, Naher S, Energy Conv. Manag., 210, 112670, 2020
  6. Li Y, Fu Q, Qin H, Yang K, Lv J, Zhang Q, Zhang H, Liu F, Chen X, Wang M, Korean J. Chem. Eng., 38, 2113, 2021
  7. Shin M, Oh S, Jeong H, Noh C, Chung Y, Han JW, Kwon Y, Int. J. Energy Res., 46, 8175, 2022
  8. Lim E, Chun J, Jo C, Hwang J, Korean J. Chem. Eng., 38, 227, 2021
  9. Oh HH, Joo J, Korean J. Chem. Eng., 38, 1052, 2021
  10. Kim SH, Choi YR, Cho YJ, Rhyu SY, Kang SW, Korean J. Chem. Eng., 38, 1715, 2021
  11. Jang N, Kim W, Lee D, Yoon G, Yang J, Cho I, Jeon H, Koo J, Korean J. Chem. Eng., 38, 2397, 2021
  12. Lee J, Lee Y, Kim S, Kwon EE, Lin KYA, Korean J. Chem. Eng., 38, 1079, 2021
  13. Oh S, Noh C, Shin M, Kwon Y, Int. J. Energy Res., 46, 8803, 2022
  14. Noh C, Moon S, Chung Y, Kwon Y, J. Mater. Chem. A, 5, 21334, 2017
  15. Noh C, Lee CS, Chi WS, Chung Y, Kim JH, Kwon Y, J. Electrochem. Soc., 165, A1388, 2018
  16. Hyeon DH, Chun JH, Lee CH, Jung HC, Kim SH, Korean J. Chem. Eng., 32, 1554, 2015
  17. Noh C, Serhiichuk D, Malikah N, Kwon Y, Henkensmeier D, Chem. Eng. J., 407, 126574, 2021
  18. Jung M, Lee W, Krishnan NN, Kim S, Gupta G, Komsiyska L, Harms C, Kwon Y, Henkensmeier D, Appl. Surf. Sci., 450, 301, 2018
  19. Lee W, Permatasari A, Kwon BW, Kwon Y, Chem. Eng. J., 358, 1438, 2019
  20. Chu C, Kwon BW, Lee W, Kwon Y, Korean J. Chem. Eng., 36, 1732, 2019
  21. Shi Y, Eze C, Xiong B, He W, Zhang H, Lim TM, Ukil A, Zhao J, Appl. Energy, 238, 202, 2019
  22. Noack J, Roznyatovskaya N, Herr T, Fischer P, Angew. Chem.-Int. Edit., 54, 9776, 2015
  23. Zhong S, Skyllas-Kazacos M, J. Power Sources, 39, 1, 1992
  24. Aaron DS, Liu Q, Tang Z, Grim GM, Papandrew AB, Turhan A, Zawodzinski TA, Mench MM, J. Power Sources, 206, 450, 2012
  25. O’Connor H, Bailey JJ, Istrate OM, Klusener PAA, Watson R, Glover S, Iacoviello F, Brett DJL, Shearing PR, Nockemann P, Sustain. Energy Fuels, 6, 1529, 2022
  26. Parra-Puerto A, Rubio-Garcia J, Markiewicz M, Zheng Z, Kucernak A, ChemElectroChem, 9, e2021016, 2022
  27. Noh C, Shin M, Kwon Y, J. Power Sources, 520, 230810, 2022
  28. Shin M, Noh C, Chung Y, Kwon Y, Chem. Eng. J., 398, 125631, 2020
  29. Noh C, Kwon BW, Chung Y, Kwon Y, J. Power Sources, 406, 26, 2018
  30. Phillips R, Dunnill CW, RSC Adv., 6, 100643, 2016
  31. Abbas S, Mehboob S, Shin HJ, Han OH, Ha HY, Chem. Eng. J., 378, 122190, 2019
  32. Hnát J, Kodým R, Denk K, Paidar M, Žitka J, Bouzek K, Chem. Ing. Tech., 91, 821, 2019
  33. Lee WH, Lim C, Lee SY, Chae KH, Choi CH, Lee U, Min BK, Hwang YJ, Oh HS, Nano Energy, 84, 105859, 2021
  34. Zeng L, Ren Y, Wei L, Fan X, Zhao T, Energy Technol., 8, 2000592, 2020
  35. Xu Z, Xiao W, Zhang K, Zhang D, Wei H, Zhang X, Zhang Z, Pu N, Liu J, Yan C, J. Power Sources, 450, 227686, 2020
  36. Wei L, Xiong C, Jiang HR, Fan XZ, Zhao TS, Energy Storage Mater., 25, 885, 2020
  37. Bunte C, Hussein L, Urban GA, J. Power Sources, 247, 579, 2014
  38. Reid RC, Minteer SD, Gale BK, Biosens. Bioelectron., 68, 142, 2015
  39. MacVittie K, Conlon T, Katz E, Bioelectrochemistry, 106, 28, 2015
  40. Mustafa I, Lopez I, Younes H, Susantyoko RA, Al-Rub RA, Almheiri S, Electrochim. Acta, 230, 222, 2017
  41. Zhang S, Ma Y, Suresh L, Hao A, Bick M, Tan SC, Chen J, ACS Nano, 14, 9282, 2020
  42. Chu K, Jia C, Li W, Wang P, Phys. Status Solidi A-Appl. Res., 210, 594, 2013
  43. Wei Y, Luo LM, Liu HB, Zan X, Song JP, Xu Q, Zhu XY, Wu YC, Mater. Des., 191, 108635, 2020
  44. Sivakkumar SR, Ko JM, Kim DY, Kim BC, Wallace GG, Electrochim. Acta, 52, 7377, 2007
  45. Han T, Xiao Y, Tong M, Huang H, Liu D, Wang L, Zhong C, Chem. Eng. J., 275, 134, 2015
  46. Shin M, Noh C, Kwon Y, Int. J. Energy Res., 46, 6866, 2022
  47. Jung M, Lee W, Noh C, Konovalova A, Yi GS, Kim S, Kwon Y, Henkensmeier D, J. Membr. Sci., 580, 110, 2019
  48. Chung Y, Noh C, Kwon Y, J. Power Sources, 438, 227063, 2019
  49. Lee W, Park G, Schröder D, Kwon Y, Korean J. Chem. Eng., 38, 1, 2022
  50. Mazur P, Mrlik J, Pocedic J, Vrana J, Dundalek J, Kosek J, Bystron T, J. Power Sources, 414, 354, 2019