Issue
Korean Journal of Chemical Engineering,
Vol.39, No.10, 2600-2614, 2022
Industrial symbiosis: Boron waste valorization through CO2 utilization
Various wastes being generated globally and dumped on land by mineral processing activities pose great ecological and health problems. An example is the boron mineral beneficiation solid wastes. Even greater threat is anthropogenic carbon dioxide (CO2) emissions among key causes of prevalent climate change. By this work, we propose a symbiotic solution to alleviate both environmental threats through recovering valuable boron products from boron wastes (BW), while also utilizing and sequestering CO2 stably and permanently. This article presents the results on the effect of important operation parameters for the performance of such a process within the following ranges determined by preliminary tests: temperature: 20-60℃, solid-to-liquid ratio: 0.1-0.5 g/ml, reaction time: 15-120 min, stirring speed: 300-700 rpm and particle size: 150-600 µm. CO2 gas (99.9%) flow rate was maintained continuously at 1.57 l/min under atmospheric pressure. The important findings are (1) per ton of BW production of commercially valuable either (a) 310 kg sodium penta-borate or (b) 350 kg sodium penta-borate mixed with Na2CO3, depending on the process configuration, (c) 725 kg relatively pure CaCO3, a potential source for precipitated calcium carbonate (PCC) and (d) 72 kg CO2 utilization, (2) effective parameters for CO2 utilization, in decreasing order are temperature, solid-toliquid ratio and time, while stirring speed and particle size are ineffective within the range investigated and (3) the optimum operating conditions as: temperature: 60℃, solid-to liquid ratio: 0.1 g/ml, time: 90 min, stirring speed: 500 rpm and particle size: <180 µm.
[References]
  1. https://www.statista.com/statistics/264982/world-boron-reserves-bymajor- countries/ (accessed 13 May 2022).
  2. http://www.etimine.com/boron-minerals/ (accessed 13 May 2022).
  3. http://www.etimine.com/boron-in-the-world/ (accessed 13 May 2022).
  4. Helvaci C, in Encyclopedia of geology, 2nd ed., A. Elias, Scott, David Eds., Academic Press (2021).
  5. Powoe SPB, Kromah V, Jafari M, Chelgani SC, Minerals, 11, 318, 2021
  6. Sajid M, Bary G, Asim M, Ahmad R, Ahamad MI, Alotaibi H, Rehman A, Khan I, Guoliang Y, Alexandria Eng. J., 61, 3069, 2022
  7. Karadagli E, Cicek B, Int. J. Appl. Ceram. Technol., 17, 563, 2020
  8. Cicek B, Karadagli E, Duman F, Ceram. Int., 44, 14264, 2018
  9. Cicek B, Karadagli E, Duman F, Constr. Build. Mater., 179, 232, 2018
  10. Kula I, Gutsche C, Erdoğan Y, Fittschen A, Fittschen UEA, Turkish J. Chem., 44, 1244, 2020
  11. Zhang Y, Guo Q, Li L, Jiang P, Jiao Y, Cheng Y, Materials, 9, 416, 2016
  12. https://agriculture.borax.com/USBorax/media/assets/infographics/borates-mineral-solubility.pdf (2021) (accessed 13 May 2022).
  13. Albayrak ZNK, Turan E, Arab. J. Geosci., 14, 1002, 2021
  14. Health W, World Health, 4th ed., World Health Organization, Geneva (2011).
  15. Xu Y, Jiang JQQ, Ind. Eng. Chem. Res., 47, 16, 2008
  16. Zaman M, Shahid SA, Heng L, Guideline for salinity assessment, mitigation and adaptation using nuclear and related techniques, Springer International Publishing, Cham (2018).
  17. Kavas T, Build. Environ., 41, 1779, 2006
  18. Olgun A, Erdogan Y, Ayhan Y, Zeybek B, Ceram. Int., 31, 153, 2005
  19. http://www.geology.cz/rroum/stazeni/2004_BAT_REFERENCE_ DOCUMENT.pdf (2004) (accessed 13 May 2022).
  20. Kula I, Olgun A, Sevinc V, Erdogan Y, Cem. Concr. Res., 32, 227, 2002
  21. Christogerou A, Lampropoulou P, Panagiotopoulos E, Constr. Build. Mater., 280, 122493, 2021
  22. Bayca SU, Theor. Found. Chem. Eng., 53, 395, 2019
  23. Christogerou A, Kavas T, Pontikes Y, Rathossi C, Angelopoulos GN, Ceram. Int., 36, 567, 2010
  24. Marangoni M, Ponsot I, Cicek B, Bernardo E, Adv. Appl. Ceram., 115, 427, 2016
  25. Tunali A, Ozel E, Turan S, J. European Ceram. Soc., 35, 1089, 2015
  26. Cicek B, Tucci A, Bernardo E, Will J, Boccaccini AR, Ceram. Int., 40, 6045, 2014
  27. Cicek B, Esposito L, Tucci A, Bernardo E, Boccaccini AR, Bingham PA, Adv. Appl. Ceram., 111, 415, 2012
  28. Kurama S, Kara A, Kurama H, J. European Ceram. Soc., 26, 755, 2006
  29. Olivier JGJ, Schure KM, Peters JAHW, PBL Netherlands Environ. Assess. Agency (2017).
  30. Masson-Delmotte V, Zhai P, Pörtner HO, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_ReportHigh_Res.pdf (2019) (accessed 13 May 2022).
  31. https://report.ipcc.ch/ar6wg3/pdf/IPCC_AR6_WGIII_FinalDraft_ FullReport.pdf (2022) (accessed 13 May 2022).
  32. Masson-Delmotte V, Zhai P, Pörtner HO, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, Summary for Policymakers: Global Warming of 1.5 ℃ (2018).
  33. ESLR, https://gml.noaa.gov/ccgg/trends/ (2021) (accessed 13 May 2022).
  34. https://www.co2.eart (accessed 22 April 2022).
  35. Åberg A, Benton TG, Froggatt A, Giritharan A, Jeffs N, Quiggin D, Townend R, Chatham House, 6 (2021).
  36. Zhao B, Su Y, Tao W, Li L, Peng Y, Int. J. Greenh. Gas Control, 9, 355, 2012
  37. You C, Kim J, Korean J. Chem. Eng., 37, 1649, 2020
  38. Kumar S, Mondal MK, Korean J. Chem. Eng., 37, 231, 2020
  39. Samanta A, Zhao A, Shimizu GKH, Sarkar P, Gupta R, Ind. Eng. Chem. Res., 51, 1438, 2012
  40. Zhang Z, Borhani TNG, El-Naas MH, in Exergetic, energetic and environmental dimensions, 1st ed., Dincer I, Colpan CO, Kızılkan O Eds., Elsevier (2018).
  41. Creamer AE, Gao B, Environ. Sci. Technol., 50, 7276, 2016
  42. González CMO, Morales EMC, de M.N. Tellez A, Quezada TES, Kharissova OV, Méndez-Rojas MA, in Handbook of greener synthesis of nanomaterials and compounds, 1st ed., Kharisov B, Kharissova O Eds., Elsevier (2021).
  43. Aniruddha R, Sreedhar I, Reddy BM, J. CO2 Util., 42, 101297, 2020
  44. Lee YR, Kim J, Ahn WS, Korean J. Chem. Eng., 30, 1667, 2013
  45. Mondal MK, Balsora HK, Varshney P, Energy, 46, 431, 2012
  46. Zunita M, Hastuti R, Alamsyah A, Khoiruddin K, Wenten IG, Sep. Purif. Rev., 51, 261, 2022
  47. Sanni ES, Sadiku ER, Okoro EE, Int. J. Chem. Eng., 2021, 1, 2021
  48. Kárászová M, Zach B, Petrusová Z, Červenka V, Bobák M, Šyc M, Izák P, Sep. Purif. Technol., 238, 116448, 2020
  49. Duke MC, Ladewig B, Smart S, Rudolph V, da Costa JCD, Front. Chem. Eng. China, 4, 184, 2010
  50. Wang X, Song C, Front. Energy Res., 8, 560849, 2020
  51. Abdah MAAM, Mokhtar M, Khoon LT, Sopian K, Dzulkurnain NA, Ahmad A, Sulaiman Y, Bella F, Su’ait MS, Energy Reports, 7, 8677, 2021
  52. Alidoost M, Mangini A, Caldera F, Anceschi A, Amici J, Versaci D, Fagiolari L, Trotta F, Francia C, Bella F, Bodoardo S, Chem.-Eur. J., 28, e2021042, 2022
  53. Freeman B, Hao P, Baker R, Kniep J, Chen E, Ding J, Zhang Y, Rochelle GT, Energy Procedia, 63, 605, 2014
  54. Nakhjiri AT, Heydarinasab A, J. Ind. Eng. Chem., 78, 106, 2019
  55. Scholes CA, Kentish SE, Qader A, Sep. Purif. Technol., 237, 116470, 2020
  56. Scholz M, Frank B, Stockmeier F, Falß S, Wessling M, Ind. Eng. Chem. Res., 52, 16929, 2013
  57. Shao P, He Z, Hu Y, Shen Y, Zhang S, Yu Y, Chem. Eng. J., 435, 134957, 2022
  58. Lavagna L, Syrrokostas G, Fagiolari L, Amici J, Francia C, Bodoardo S, Leftheriotis G, Bella F, J. Mater. Chem. A, 9, 19687, 2021
  59. Reina M, Scalia A, Auxilia G, Fontana M, Bella F, Ferrero S, Lamberti A, Adv. Sustain. Syst., 6, 2100228, 2022
  60. Zhang W, Xu Y, Wang Q, Energy, 241, 122524, 2022
  61. Jansen D, Gazzani M, Manzolini G, van Dijk E, Carbo M, Int. J. Greenh. Gas Control, 40, 167, 2015
  62. Omoregbe O, Mustapha AN, Steinberger-Wilckens R, El- Kharouf A, Onyeaka H, Energy Reports, 6, 1200, 2020
  63. Osman AI, Abu-Dahrieh JK, Cherkasov N, Fernandez-Garcia J, Walker D, Walton RI, Rooney DW, Rebrov E, Mol. Catal., 455, 38, 2018
  64. Osman AI, Deka TJ, Baruah DC, Rooney DW, Biomass Convers. Biorefinery, 1, 2020
  65. Wienchol P, Szlęk A, Ditaranto M, Energy, 198, 117352, 2020
  66. Wilberforce T, Olabi AG, Sayed ET, Elsaid K, Abdelkareem MA, Sci. Total Environ., 761, 143203, 2021
  67. Bui M, Adjiman CS, Bardow A, Anthony EJ, Boston A, Brown S, Fennell PS, Fuss S, Galindo A, Hackett LA, Hallett JP, Energy Environ. Sci., 11, 1062, 2018
  68. Osman AI, Hefny M, Abdel Maksoud MIA, Elgarahy AM, Rooney DW, Environ. Chem. Lett., 19, 797, 2021
  69. Shreyash N, Sonker M, Bajpai S, Tiwary SK, Khan MA, Raj S, Sharma T, Biswas S, Energies, 14, 4978, 2021
  70. Sifat NS, Haseli Y, Energies, 12, 4143, 2019
  71. Gabrielli P, Gazzani M, Mazzotti M, Ind. Eng. Chem. Res., 59, 7033, 2020
  72. Ghiat I, Al-Ansari T, J. CO2 Util., 45, 101432, 2021
  73. Chao C, Deng Y, Dewil R, Baeyens J, Fan X, Renew. Sust. Energ. Rev., 138, 110490, 2021
  74. Ma J, Li L, Wang H, Du Y, Ma J, Zhang X, Wang Z, Engineering, In press (2022).
  75. Smith E, Morris J, Kheshgi H, Teletzke G, Herzog H, Paltsev S, Int. J. Greenh. Gas Control, 109, 103367, 2021
  76. IEAGHG, The Status and Challenges of CO2 Shipping Infrastructures. Technical Report 2020-10 (2020).
  77. National Petroleum Council, Meeting the Dual Challenge - A Roadmap to At-Scale Deployment of Carbon Capture, Use and Storage (2020).
  78. Psarras P, He J, Pilorgé H, McQueen N, Jensen-Fellows A, Kian K, Wilcox J, Environ. Sci. Technol., 54, 6272, 2020
  79. Righetti TK, Oil Gas, Nat. Resour. Energy J., 3, 907, 2017
  80. Sanchez DL, Johnson N, McCoy ST, Turner PA, Mach KJ, Proc. Natl. Acad. Sci., 115, 4875, 2018
  81. [IEA] - International Energy Agency, Special Report on Carbon Capture, Utilisation and Storage: CCUS in Clean Energy Transitions (2020).
  82. https://ec.europa.eu/energy/maps/pci_fiches/PciFiche_12.4.pdf (accessed 22 April 2022).
  83. Energy Technologies Institute, https://www.eti.co.uk/programmes/carbon-capture-storage/strategic-uk-ccs-storage-appraisal (2016) (accessed 13 May 2022).
  84. Arning K, Offermann-van Heek J, Sternberg A, Bardow A, Ziefle M, Environ. Innov. Soc. Transitions, 35, 292, 2020
  85. Mulyasari F, Harahap AK, Rio AO, Sule R, Kadir WGA, Int. J. Greenh. Gas Control, 108, 103312, 2021
  86. Arning K, Linzenich A, Engelmann L, Ziefle M, Energy Clim. Chang., 2, 100025, 2021
  87. Power Technology, https://www.power-technology.com/features/carbon-capture-cost/ (accessed 13 May 2022).
  88. Adam Baylin-Stern and Niels Berghout, https://www.iea.org/commentaries/is-carbon-capture-too-expensive (accessed 13 May 2022) (2021).
  89. https://www.iea.org/reports/direct-air-capture-3 (2022) (accessed 13 May 2022).
  90. THE Verge, https://www.theverge.com/2022/4/7/23013822/carbon- dioxide-removal-direct-air-capture-climate-change (accessed 13 May 2022).
  91. https://www.iea.org/reports/direct-air-capture-2022 (2022) (accessed 13 May 2022).
  92. THE VERGE, https://www.theverge.com/2022/4/4/23009804/united-nations-climate-change-report-greenhouse-emissions-2030-ipcc (accessed 13 May 2022).
  93. Pekdemir T, Carbon dioxide utilisation: Closing the carbon cycle: 1st ed., Elsevier Inc. (2014).
  94. Baena-Moreno FM, Rodríguez-Galán M, Vega F, Alonso-Fariñas B, Arenas LFV, Navarrete B, Energy Sources Part A-Recovery Util. Environ. Eff., 41, 1403, 2019
  95. Schreiber A, Zapp P, Kuckshinrichs W, Int. J. Life Cycle Assess., 14, 547, 2009
  96. Warnke P, Cuhls K, Schomoch U, Daniel L, Andresscu L, Dragomir B, Gheirghiu R, Baboschi C, Curaj A, Parkkinen M, Kuusi O, 100 Radical Innovation Breakthroughs for the future, European Commission (2019).
  97. Montes-Hernandez G, Bah M, Renard F, J. CO2 Util., 35, 272, 2020
  98. https://www.reportlinker.com/p06087127/Precipitated-Calcium-Carbonate-Market-Research-Report-by-Type-by-End-User-by- State-United-States-Forecast-to-Cumulative-Impact-of-COVID- 19.htmlutm_source=GNW (2021) (accessed 13 May 2022).
  99. Kakizawa M, Yamasaki A, Yanagisawa Y, Energy, 26, 341, 2001
  100. Teir S, Eloneva S, Zevenhoven R, Energy Conv. Manag., 46, 2954, 2005
  101. Zevenhoven R, Eloneva S, Teir S, Catal. Today, 115, 73, 2006
  102. Park AHA, Fan LS, Chem. Eng. Sci., 59, 5241, 2004
  103. Nduagu E, Björklöf T, Fagerlund J, Wärn J, Geerlings H, Zevenhoven R, Miner. Eng., 30, 75, 2012
  104. Harrison AL, Power IM, Dipple GM, Environ. Sci. Technol., 47, 126, 2013
  105. Pasquier LC, Mercier G, Blais JF, Cecchi E, Kentish S, Environ. Sci. Technol., 48, 5163, 2014
  106. Kemache N, Pasquier LC, Cecchi E, Mouedhen I, Blais JF, Mercier G, Fuel Process. Technol., 166, 209, 2017
  107. Lee JH, Lee JH, Korean J. Chem. Eng., 38, 1757, 2021
  108. Bobicki ER, Liu Q, Xu Z, Zeng H, Prog. Energy Combust. Sci., 38, 302, 2012
  109. Bingöl MS, Çopur M, J. CO2 Util., 29, 29, 2019
  110. Ozekmekci M, Copur M, J. CO2 Util., 42, 101321, 2020
  111. Elçiçek H, Kocakerim MM, Braz. J. Chem. Eng., 35, 111, 2018
  112. https://www.indiamart.com/proddetail/sodium-pentaborate-1211448991.html (accessed 13 May 2022).
  113. Kula I, Olgun A, Erdogan Y, Sevinc V, Cem. Concr. Res., 31, 491, 2001
  114. Olgun A, Kavas T, Erdogan Y, Once G, Build. Environ., 42, 2384, 2007
  115. Uçar N, Çalık A, Emre M, Akkurt I, Indoor Built Environ., 30, 1827, 2021
  116. Buli N, Abnett K, Twidale S, https://www.reuters.com/business/energy/eu-carbon-price-tops-50-euros-first-time-2021-05-04/ (2021) (accessed 13 May 2022).
  117. IEA, https://www.iea.org/news/global-carbon-dioxide-emissionsare- set-for-their-second-biggest-increase-in-history (2021 (accessed 13 May 2022).
  118. Hollander M, Rieman W III, Ind. Eng. Chem. Anal. Ed., 17, 602, 1945
  119. Xu S, Gao Q, Zhou C, Li J, Shen L, Lin H, Mater. Chem. Phys., 274, 125182, 2021
  120. Huang Z, Zeng Q, Liu Y, Xu Y, Li R, Hong H, Shen L, Lin H, J. Membr. Sci., 640, 119854, 2021
  121. Chen B, Xie H, Shen L, Xu Y, Zhang M, Yu H, Li R, Lin H, J. Membr. Sci., 640, 119820, 2021
  122. Rao L, You X, Chen B, Shen L, Xu Y, Zhang M, Hong H, Li R, Lin H, Chemosphere, 288, 132490, 2022
  123. Fang J, Chen Y, Fang C, Zhu L, Sep. Purif. Technol., 281, 119876, 2022
  124. Anderson JL, Eyring EM, Whittaker MP, J. Phys. Chem., 68, 1128, 1964
  125. Zhou Y, Fang C, Fang Y, Zhu F, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 83, 82, 2011
  126. Kabay N, Bryjak M, Hilal N, Boron separation processes, Elsevier, New York (2015).
  127. Nian CY, Yang WH, Tarng YS, J. Mater. Process. Technol., 95, 90, 1999
  128. Phadke MS, Kackar RN, Speeney DV, Grieco MJ, Bell Syst. Tech. J., 62, 1273, 1983
  129. Pignatiello JJ, IIE Trans., 20, 247, 1988
  130. Ross PJ, Taguchi techniques for quality engineering: loss function, orthogonal experiments, parameter and tolerance design, 2nd Ed., McGraw-Hill, New York (1996).
  131. Taguchi G, System of experimental design; quality resources, Unipub-Kraus International Publications, New York (1987).
  132. Phadke MS, Quality engineering using robust design, Prentice-Hall, Englewood Cliffs, New Jersey (1989).
  133. Çopur M, Pekdemir T, Çelik C, Çolak S, Ind. Eng. Chem. Res., 36, 682, 1997
  134. Islam MN, Pramanik A, J. Adv. Manuf. Syst., 15, 151, 2016
  135. Peace GS, Taguchi methods, a hands-on approach to quality engineering, Addison-Wesley, New York (1995).
  136. Mook WG, in Environmental isotopes in the hydrological cycle - principles and applications, Mook WG Ed., (2001).
  137. Barzagli F, Giorgi C, Mani F, Peruzzini M, J. CO2 Util., 22, 346, 2017
  138. Schubert DM, in Ullmann’s encyclopedia of industrial chemistry, Wiley-VCH Verlag GmbH & Co. KGaA (2015).
  139. Kitano Y, Okumura M, Idogake M, Idogaki M, Geochem. J., 13, 223, 1979
  140. Kitano Y, Okumura M, Idogaki M, Geochem. J., 12, 183, 1978
  141. http://www.webmineral.com/data/Sborgite.shtml#.YmsQUtpBw2z (2012) (accessed 13 May 2022).
  142. Chukanov NV, Infrared spectra of mineral species, Springer Netherlands, Dordrecht (2014).
  143. Merlino S, Acta Crystallogr. Sect. B-Struct. Sci., 28, 3559, 1972
  144. Spinosa ED, Hooie DT, Bennett RB, Summary report on emissions from the glass manufacturing industry, Environmental Protection Technology Series. EPA, Ohio (1979).
  145. Pacheco-Torgal F, Shi C, Sanchez AP, Sánchez AP, Torgal FP, Carbon dioxide sequestration in cementitious construction materials, Woodhead Publishing (2018).
  146. Schubert DM, in Ullmann’s encyclopedia of industrial chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2015).
  147. https://www.iea.org/news/global-carbon-dioxide-emissions-are-setfor-their-second-biggest-increase-in-history (2021) (accessed 13 May 2022).
  148. Davis R, John P, in Statistical approaches with emphasis on design of experiments applied to chemical processes, InTech (2018).
  149. https://www.made-in-china.com/products-search/hot-china-products/Calcium_Carbonate_Price.html (accessed 13 May 2022).
  150. https://www.alibaba.com/showroom/pure-calcium-carbonate-price. html (accessed 13 May 2022).