Issue
Korean Journal of Chemical Engineering,
Vol.39, No.10, 2636-2651, 2022
Investigating the effect of different nanoparticles on thermo-economic optimization of gasket plate heat exchanger
This paper reports an investigation into the effects of different nanoparticles, including copper oxide, zirconium oxide, aluminum oxide, and silicon oxide nanoparticles, on thermoeconomic optimization of the gasket plate heat exchanger (GPHE). Effectiveness and total annual cost (TAC) were selected as two objective functions simultaneously. The non-dominated sorting genetic algorithm (NSGA-II) with seven design variables involving particle volumetric concentration and geometrical parameters of the GPHE was used for optimization. Results showed that TAC versus effectiveness was improved when nanoparticles were applied. The results of the optimization show that heat exchanger thermoeconomic parameters are better improved in the case of copper oxide as nanoparticles and generally followed by zirconium oxide, aluminiom oxide, silicon oxide. For example, 2.61% growth in the effectiveness and 6.8% reduction in the TAC are observed in the case of copper oxide nanoparticles compared with the case of without nanoparticles. The effectiveness and TAC decreased with an increase in the corrugation wavelength, while an enhancing in the plate length of the GPHE leads to an increase in effectiveness and TAC. Also, the results indicate that with an enhancement of the particle volumetric concentration of nanoparticles, effectiveness and TAC were increased linearly. Finally, the effect of the price of different nanoparticles on TAC was studied.
[References]
  1. Shah RK, Sekulic DP, Fundamentals of heat exchanger design, John Wiley & Sons (2003).
  2. Kays WM, London AL, Compact heat exchangers, McGraw-Hill Book Company, Inc., New York, N. Y (1958).
  3. Imran M, Pambudi NA, Farooq M, Case Stud. Therm. Eng., 10, 570, 2017
  4. Gulenoglu C, Akturk F, Aradag S, Uzol NS, Kakac S, Int. J. Therm. Sci., 75, 249, 2014
  5. Yildiz A, Ersöz MA, Renew. Sust. Energ. Rev., 42, 240, 2015
  6. Shokouhmand H, Hasanpour M, Case Stud. Therm. Eng., 18, 100570, 2020
  7. Mohammed HI, Giddings D, Walker GS, Talebizadehsardari P, Mahdi JM, Int. Commun. Heat Mass Transf., 117, 104773, 2020
  8. Ju Y, Zhu T, Mashayekhi R, Mohammed HI, Khan A, Talebizadehsardari P, Yaïci W, J. Nanomater., 11(6), 1570, 2021
  9. Gholap AK, Khan JA, Appl. Energy, 84(12), 1226, 2007
  10. Mohammed HI, Giddings D, Walker GS, Int. J. Heat Mass Transf., 125, 218, 2018
  11. Mohammed HI, Giddings D, Int. J. Therm. Sci., 146, 106099, 2019
  12. Hajabdollahi F, Hajabdollahi Z, Hajabdollahi H, Heat Transf. Res., 44(8), 2013
  13. Mohammed HI, Giddings D, Walker GS, Int. J. Heat Mass Transf., 130, 710, 2019
  14. Vajjha RS, Das DK, Int. J. Heat Mass Transf., 52(21-22), 4675, 2009
  15. Vajjha RS, Das DK, Int. J. Heat Mass Transf., 55(15-16), 4063, 2012
  16. Sharma KV, Sarm PK, Azmi WH, Mamat R, Kadirgama K, Int. J. Microscale Nanoscale Therm. Fluid Transp. Phenom, 3(4), 1, 2012
  17. Lotfi R, Saboohi Y, Rashidi AM, Int. Commun. Heat Mass Transf., 37(1), 74, 2010
  18. Maré T, Halelfadl S, Sow O, Estellé P, Duret S, Bazantay F, Exp. Therm. Fluid Sci., 35(8), 1535, 2011
  19. Guo Z, J. Enhanced Heat Transfer, 27(1), 2020
  20. Tiwari AK, Ghosh P, Sarkar J, Exp. Therm Fluid Sci., 49, 141, 2013
  21. Pantzali MN, Mouza AA, Paras SV, Chem. Eng. Sci., 64(14), 3290, 2009
  22. Kumar V, Tiwari AK, Ghosh SK, Energy Conv. Manag., 118, 142, 2016
  23. Taghizadeh-Tabari Z, Heris SZ, Moradi M, Kahani M, Renew. Sust. Energ. Rev., 58, 1318, 2016
  24. Huang D, Wu Z, Sunden B, Int. J. Heat Mass Transf., 89, 620, 2015
  25. Hajabdollahi H, Ataeizadeh M, Masoumpour B, Dehaj MS, Heat Transf. Res., 52(3), 2021
  26. Hajabdollahi H, Masoumpour B, Ataeizadeh M, Heat Transf., 50(1), 56, 2021
  27. Dehaj MS, Hajabdollahi H, Int. J. Environ. Sci. Technol., 19(3), 1407, 2022
  28. Kakac S, Liu H, Pramuanjaroenkij A, HEs: selection, rating, and thermal design, CRC press (2012).
  29. Branke J, Branke J, Deb K, Miettinen K, Slowiński R, Lect. Notes Comput. Sci., 5252, 2008
  30. Hajabdollahi H, Appl. Therm. Eng., 82, 152, 2015