Issue
Korean Journal of Chemical Engineering,
Vol.39, No.9, 2291-2306, 2022
Reactive distillation for methanol synthesis: Simulation-based design methodology
A simulation-based design methodology for configuring a reactive distillation (RD) column for methanol synthesis is presented in this work. Unlike other processes using RD, all the reactants involved in methanol synthesis are gaseous and, therefore, the conventional methods used for the design of RD columns cannot be used. The simulation- based design algorithm also gives better insights into the process. RD for methanol synthesis requires an inert solvent and the column configuration has side coolers on the stages to remove the heat of reaction. The developed algorithm aims to maximize the methanol production, while minimizing the solvent requirement and the number of side coolers. The methodology has been demonstrated for three different feed syngas compositions. It is observed that the performance of RD is either at par with, or superior to, the conventional process for the studied cases. A multiparametric sensitivity analysis shows that the solution obtained using this design algorithm is within 0.3% of the local optimum. The effect of solvent flowrate on the column sizing and economics and the possibility of multiple steadystates is also illustrated.
[References]
  1. Olah GA, Goeppert A, Prakash GKS, Beyond oil and gas: The methanol economy, Wiley-VCH, Weinheim, Germany (2006).
  2. Alvarado M, The changing face of the global methanol industry (2016).
  3. IRENA and Methanol Institute, Innovation Outlook: Renewable Methanol, Abu Dhabi (2021).
  4. Air Liquide, Lurgi MegaMethanolTM (2021)
  5. Rahimpour MR, Ghader S, Chem. Eng. Technol., 26, 902, 2003
  6. Arora A, Iyer SS, Bajaj I, Hasan MMF, Ind. Eng. Chem. Res., 57, 14143, 2018
  7. Sharma MM, Mahajani SM, in Reactive distillation: Status and future directions, K. Sundmacher and A. Kienle Eds., Weinheim, FRG, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2003).
  8. Novita FJ, Lee HY, Lee M, Korean J. Chem. Eng., 35, 926, 2018
  9. Kim SY, Kim DM, Lee B, Korean J. Chem. Eng., 34, 1310, 2017
  10. Nemphos SP, Groten WA, Adams JR, US Patent 5,886,055 (1999).
  11. Ghosh S, Seethamraju S, Process Integr. Optim. Sustain., 4, 325, 2020
  12. Ghosh S, Seethamraju S, Chem. Eng. Process., 145, 107673, 2019
  13. Ghosh S, Seethamraju S, Process Integr. Optim. Sustain., 5, 827, 2021
  14. Ghosh S, Srinivas S, Process Integr. Optim. Sustain., 6, 527, 2022
  15. Almeida-Rivera CP, Swinkels PLJ, Grievink J, Comput. Chem. Eng., 28, 1997, 2004
  16. Barbosa D, Doherty MF, Chem. Eng. Sci., 43, 1523, 1988
  17. Buzad G, Doherty MF, Chem. Eng. Sci., 49, 1947, 1994
  18. Okasinski MJ, Doherty MF, Ind. Eng. Chem. Res., 37, 2821, 1998
  19. Li H, Meng Y, Li X, Gao X, Chem. Eng. Res. Des., 111, 479, 2016
  20. Giessler S, Danilov RY, Pisarenko RY, Serafimov LA, Hasebe S, Hashimoto I, Ind. Eng. Chem. Res., 37, 4375, 1998
  21. Nisoli A, Malone MF, Doherty MF, AIChE J., 43, 374, 1997
  22. Lee JW, Hauan S, Westerberg AW, AIChE J., 46, 1218, 2000
  23. Ciric AR, Gu D, AIChE J., 40, 1479, 1994
  24. Stichlmair J, Frey T, Ind. Eng. Chem. Res., 40, 5978, 2001
  25. Malone MF, Doherty MF, Ind. Eng. Chem. Res., 39, 3953, 2000
  26. Srinivas S, Mahajani SM, Malik RK, Ind. Eng. Chem. Res., 49, 9673, 2010
  27. Aspen Plus® v8.4, 2013, AspenTech Inc., Burlington, MA, USA (2013).
  28. Taylor R, Krishna R, Chem. Eng. Sci., 55, 5183, 2000
  29. van der Laan GP, Beenackers AACM, Ding B, Strikwerda JC, Catal. Today, 48, 93, 1999
  30. Kobl K, Thomas S, Zimmermann Y, Parkhomenko K, Roger AC, Catal. Today, 270, 31, 2016
  31. Krishnan C, Elliott JR, Berty JM, Ind. Eng. Chem. Res., 30, 1413, 1991
  32. Graaf GH, Smit HJ, Stamhuis EJ, Beenackers AACM, J. Chem. Eng. Data, 37, 146, 1992
  33. Ghosh S, Seethamraju S, Chem. Eng. Process., 145, 107673, 2019
  34. Higman C, van der Burgt M, Gasification, Gulf Professional Publishing (2008).
  35. Luyben WL, Ind. Eng. Chem. Res., 49, 6150, 2010
  36. Bussche KMV, Froment GF, J. Catal., 10, 1, 1996
  37. Bozzano G, Manenti F, Prog. Energy Combust. Sci., 56, 71, 2016
  38. Jacobs R, Krishna R, Ind. Eng. Chem. Res., 32, 1706, 1993
  39. Mohl KD, Kienle A, Gilles ED, Chem. Eng. Technol., 21, 133, 1998
  40. Rapmund P, Sundmacher K, Hoffmann U, Chem. Eng. Technol., 21, 136, 1998
  41. Chen F, Huss RS, Doherty MF, Malone MF, Comput. Chem. Eng., 26, 81, 2002
  42. Kienle A, Marquardt W, in Reactive distillation: Status and future directions, Sundmacher K, Kienle A Eds., Weinheim, FRG, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2003).
  43. Srinivas S, Malik RK, Mahajani SM, Ind. Eng. Chem. Res., 47, 889, 2008
  44. Sneesby MG, Tadé MO, Smith TN, Dev. Chem. Eng. Miner. Process., 7, 41, 2008
  45. Schühle P, Reichenberger S, Marzun G, Albert J, Chem. Ing. Tech., 93, 585, 2020
  46. Nieminen H, Givirovskiy G, Laari A, Koiranen T, J. CO2 Util., 24, 180, 2018