Issue
Korean Journal of Chemical Engineering,
Vol.39, No.11, 3146-3154, 2022
Performance evaluation of aqueous all iron redox flow batteries using heat treated graphite felt electrode
The effect of heat treatment of graphite felt (GF) electrode on the performance of aqueous redox flow batteries (ARFBs) using Ferrocyanide and iron-3-[Bis(2-hydroxyethyl)amino]-2-hydroxy-propanesulfonic acid complex (Fe(DIPSO)) as redox couple was evaluated. For the heat treatment of GF, temperature and retention time were determined as main parameters to affect the performance of ARFB. With their changes, the double layer capacitance (DLC) and surface area of GF electrodes were varied. When GF was heat treated at 600 ℃ for 1 h, its DLC and surface area were best as 0.3708 F g-1 and 1.8408m2 g-1. With the enhancements in DLC and surface area, the redox reactivity of Ferrocyanide and Fe(DIPSO) also improved, while their charge transfer resistance reduced. When the heat treated GF was used as electrodes, ARFB single cell using Ferrocyanide and Fe(DIPSO) showed better performance than ARFB single cell using pristine GF without heat treatment. For example, with the heat-treated GF, energy efficiency increased from 56 to 63% at a high current density of 200 mA cm-2, and its maximum power density was 14% more improved.
[References]
  1. Yang Z, Zhang J, Kintner-Meyer MCW, Lu X, Choi D, Lemmon JP, Liu J, Chem. Rev., 111, 3577, 2011
  2. Noh C, Jung M, Henkensmeier D, Nam SW, Kwon Y, ACS Appl. Mater. Interfaces, 9, 36799, 2017
  3. Rahman FA, Aziz MMA, Saidur R, Bakar WAWA, Hainin MR, Putrajaya R, Hassan NA, Renew. Sust. Energ. Rev., 71, 112, 2017
  4. Jung M, Lee W, Krishnan NN, Kim S, Gupta G, Komsiyska L, Harms C, Kwon Y, Henkensmeier D, Appl. Surf. Sci., 450, 301, 2018
  5. Bull SR, Proc. IEEE, 89, 1216, 2001
  6. Hayman B, Wedel-Heinen J, Brøndsted P, MRS Bull., 3, 343, 2008
  7. Chen H, Cong TN, Yang W, Tan C, Li Y, Ding Y, Prog. Nat. Sci., 19, 291, 2009
  8. Moon S, Kwon BW, Chung Y, Kwon Y, J. Electrochem. Soc., 166, A2602, 2019
  9. Lee W, Park G, Schröder D, Kwon Y, Korean J. Chem. Eng., 38, 1, 2022
  10. Smith K, Saxon A, Keyser M, Lundstrom B, Cao Z, Roc A, in 2017 Am. Control Conf., 4062 (2017).
  11. Kong L, Li C, Jiang J, Pecht MG, Energies, 11, 1, 2018
  12. Lee W, Kwon BW, Jung M, Serhiichuk D, Henkensmeier D, Kwon Y, J. Power Sources, 439, 227079, 2019
  13. Chung Y, Noh C, Kwon Y, J. Power Sources, 438, 227063, 2019
  14. Skyllas-Kazacos M, Chakrabarti MH, Hajimolana SA, Mjalli FS, Saleem M, J. Electrochem. Soc., 158, R55, 2011
  15. Noh C, Moon S, Chung Y, Kwon Y, J. Mater. Chem. A, 5, 21334, 2017
  16. Noh C, Lee CS, Chi WS, Chung Y, Kim JH, Kwon Y, J. Electrochem. Soc., 165, A1388, 2018
  17. Chen R, Kim S, Chang Z, Redox Princ. Adv. Appl., 103, 2017
  18. Chen M, Liu P, Li Y, Hu Y, Hu Z, Wang Q, J. Therm. Anal. Calorim., 147, 4131, 2022
  19. Pham-Truong TN, Wang Q, Ghilane J, Randriamahazaka H, ChemSusChem, 13, 2142, 2020
  20. Lee W, Jo C, Youk S, Shin HY, Lee J, Chung Y, Kwon Y, Appl. Surf. Sci., 429, 187, 2018
  21. Rychcik M, Skyllas-Kazacos M, J. Power Sources, 22, 59, 1988
  22. Strużyńska-Piron I, Jung M, Maljusch A, Conradi O, Kim S, Jang JH, Kim HJ, Kwon Y, Nam SW, Henkensmeier D, Eur. Polym. J., 96, 383, 2017
  23. Jung HY, Cho MS, Sadhasivam T, Kim JY, Roh SH, Kwon Y, Solid State Ion., 324, 69, 2018
  24. Chu C, Kwon BW, Lee W, Kwon Y, Korean J. Chem. Eng., 36, 1732, 2019
  25. Lee W, Park G, Chang D, Kwon Y, Korean J. Chem. Eng., 37, 2326, 2020
  26. Lee W, Permatasari A, Kwon BW, Kwon Y, Chem. Eng. J., 358, 1438, 2019
  27. Li Y, Sniekers J, Malaquias J, Li X, Schaltin S, Stappers L, Binnemans K, Fransaer J, Vankelecom IFJ, Electrochim. Acta, 236, 116, 2017
  28. Leung PK, Ponce-De-León C, Low CTJ, Shah AA, Walsh FC, J. Power Sources, 196, 5174, 2011
  29. Liu Y, Goulet MA, Tong L, Liu Y, Ji Y, Wu L, Gordon RG, Aziz MJ, Yang Z, Xu T, Chem, 5, 1861, 2019
  30. Zhen Y, Zhang C, Yuan J, Zhao Y, Li Y, J. Power Sources, 480, 229132, 2020
  31. Hu B, Luo J, Hu M, Yuan B, Liu TL, Angew. Chem.-Int. Edit., 131, 16782, 2019
  32. Noh C, Chung Y, Kwon Y, Chem. Eng. J., 405, 126966, 2021
  33. Noh C, Chung Y, Kwon Y, J. Power Sources, 466, 228333, 2020
  34. Waters SE, Robb BH, Marshak MP, Marshak MP, ACS Energy Lett., 5, 1758, 2020
  35. Shin M, Noh C, Kwon Y, Int. J. Energy Res., 46, 6866, 2022
  36. Noh C, Shin M, Kwon Y, J. Power Sources, 520, 230810, 2022
  37. Shin M, Noh C, Chung Y, Kwon Y, Chem. Eng. J., 398, 125631, 2020
  38. Shin M, Noh C, Chung Y, Kim DH, Kwon Y, Appl. Surf. Sci., 550, 148977, 2021
  39. Noh C, Kwon BW, Chung Y, Kwon Y, J. Power Sources, 406, 26, 2018
  40. Chung Y, Jeong J, Pham HTT, Lee J, Kwon Y, J. Electrochem. Soc., 165, A2703, 2018
  41. Sun B, Skyllas-Kazacos M, Electrochim. Acta, 37, 1253, 1992
  42. Mazúr P, Mrlík J, Beneš J, Pocedič J, Vrána J, Dundálek J, Kosek J, J. Power Sources, 380, 105, 2018
  43. Jing M, Xu Z, Fang D, Fan X, Liu J, Yan C, J. Electrochem. Soc., 168, 030539, 2021
  44. Chang YC, Chen JY, Kabtamu DM, Lin GY, Hsu NY, Chou YS, Wei HJ, Wang CH, J. Power Sources, 364, 1, 2017
  45. Dong YR, Kawagoe Y, Itou K, Kaku H, Hanafusa K, Moriuchi K, Shigematsu T, ECS Trans., 75, 27, 2017
  46. Mazur P, Mrlik J, Pocedic J, Vrana J, Dundalek J, Kosek J, Bystron T, J. Power Sources, 414, 354, 2019
  47. Christwardana M, Chung Y, Kwon Y, Korean J. Chem. Eng., 34, 3009, 2017
  48. Hyun K, Kang S, Kwon Y, Korean J. Chem. Eng., 36, 500, 2019
  49. Wang R, Li Y, He YL, J. Mater. Chem. A, 7, 10962, 2019
  50. Jiang HR, Shyy W, Wu MC, Zhang RH, Zhao TS, Appl. Energy, 233-234, 105, 2019