Issue
Korean Journal of Chemical Engineering,
Vol.39, No.11, 3155-3164, 2022
Efficient dual adsorption of eosinY and methylene blue from aqueous solution using nanocomposite of graphene oxide nanosheets and ZnO nanospheres
A versatile graphene oxide nanosheets-ZnO nanospheres nanocomposite was synthesized for removal of dyes via adsorption process and characterized by various techniques, such as X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transform infrared (FTIR), and zeta potential (ZP) analyzer. The synthesized nanocomposite (NCs) was utilized as an efficient adsorbent for the removal of anionic dye eosin y (EY) as well as cationic dye methylene blue (MB) from aqueous solutions. The kinetics of adsorption was studied by pseudo-first and pseudosecond- order kinetics and the adsorption data was well in agreement with the pseudo-second-order model. The R2 values of 0.9971 and 0.9839 of the second order for EY and MB, respectively, were greater than that of the first order. To calculate the most suitable isotherm model for adsorption, the Freundlich and Langmuir isotherms were applied and the data for both dyes fitted well with the Langmuir model. The maximum adsorption capacities obtained from Langmuir isotherm for EY and MB were 555.55 and 250mg/g, respectively. Remarkably, 3.0mg/13mL of nanocomposite adsorbed 0.1mg/mL of EY and 0.04mg/mL of MB in the very short time of 10 and 15minutes, respectively. The high adsorption efficiency of GO/ZnO NCs suggests that they may be a useful adsorbent for the purification of industrial wastewater.
[References]
  1. Besharati N, Alizadeh N, Shariati S, J. Mex. Chem. Soc., 62, 110, 2019
  2. Salama A, Shoueir KR, Aljohani HA, Fibers Polym., 18, 1825, 2017
  3. Sharma S, Saxena R, Gaur G, IOSR J. Appl. Chem., 7, 6, 2014
  4. Yadav S, Asthana A, Chakraborty R, Jain B, Singh AK, Carabineiro SA, Susan M, Susan MABH, Nanomaterials, 10, 170, 2020
  5. Eljiedi AAA, Kamari A, AIP Conf. Proc., 1847, 040003, 2017
  6. Veerakumar P, Tharini J, Ramakrishnan M, Muthuselvam IP, Lin KC, ChemistrySelect, 2, 3598, 2017
  7. Zhang M, Yu Z, Yu H, Polym. Bull., 77, 1049, 2020
  8. Sharma S, Kaur A, Indian J. Sci. Technol., 11, 1, 2018
  9. Kalantari K, Kalbasi M, Sohrabi M, Royaee SJ, Ceram. Int., 42, 14834, 2016
  10. Khurana I, Saxena A, Bharti, Khurana JM, Rai PK, Water Air Soil Pollut., 228, 180, 2017
  11. Fathy M, Moghny TA, Mousa MA, El-Bellihi AHAA, Awadallah AE, Appl. Nanosci., 6, 1105, 2016
  12. Cao Y, Li X, Adsorption, 20, 713, 2014
  13. Zhang F, Lan J, Yang Y, Wei T, Tan R, Song W, J. Nanopart. Res., 15, 2034, 2013
  14. Kandisa RV, Saibaba KVN, Shaik KB, Gopinath R, J. Bioremediat. Biodegrad, 7, 371, 2016
  15. Cordova AG, Morales MDP, Mazario E, Water, 11, 2372, 2019
  16. Bhattacharya S, Saha I, Mukhopadhyay A, Chattopadhyay D, Chand U, Int. J. Chem. Sci. Technol., 3, 59, 2013
  17. Sivamani S, Leena GB, Int. J. Biosci. Technol., 2, 47, 2009
  18. Liang J, Huang Y, Zhang F, Zhang Y, Li N, Chen YS, Sci. China Technol. Sci., 57, 284, 2014
  19. Liu S, Ma J, Zhang W, Luo F, Luo M, Li F, Wu L, J. Radioanal. Nucl. Chem., 306, 507, 2015
  20. Bian SW, Mudunkotuwa IA, Rupasinghe T, Grassian VH, Langmuir, 27, 6059, 2011
  21. Atta A, Akl MA, Youssef AM, Ibraheim MA, Adsorpt. Sci. Technol., 31, 397, 2013
  22. Fatehah MO, Aziz HA, Stoll S, J. Colloid Sci. Biotechnol., 3, 75, 2014
  23. Kulkarni JC, Chavhan A, Bappakhane A, Chimmankar J, Rjces, 4, 158, 2016
  24. Zafar MN, Dar Q, Nawaz F, Zafar MN, Iqbal M, Nazar MF, J. Mater. Res. Technol., 8, 713, 2019
  25. Krishnamoorthy K, Veerapandian M, Yun K, Kim SJ, Carbon N.Y., 53, 38, 2013
  26. Xia J, Diao K, Zheng Z, Cui X, RSC Adv., 7, 38444, 2017
  27. Vidhya K, Saravanan M, Bhoopathi G, Devarajan VP, Subanya S, Appl. Nanosci., 5, 235, 2015
  28. Sagasti A, Bouropoulos N, Kouzodis D, Panagiotopoulos A, Topoglidis E, Gutierrez J, Materials, 10, 849, 2017
  29. Sarkar C, Bora C, Dolui SK, Ind. Eng. Chem. Res., 53, 16148, 2014
  30. Ashraf MW, Abulibdeh N, Salam A, Int. J. Chem. Eng., 2019, 1, 2019
  31. Saber-Samandari S, Saber-Samandari S, Joneidi-Yekta H, Mohseni M, Chem. Eng. J., 308, 1133, 2017
  32. Khoshhesab ZM, Souhani S, J. Chin. Chem. Soc., 65, 1482, 2018
  33. Arias FA, Guevara M, Tene T, Angamarca P, Molina R, Valarezo A, Salguero O, Gomez CV, Arias M, Caputi LS, Nanomaterials, 10, 681, 2020
  34. Boukoussa B, Hakiki A, Moulai S, Chikh K, Kherroub DE, Bouhadjar L, Guedal D, Messaoudi K, Mokhtar F, Hamacha R, J. Mater. Sci., 53, 7372, 2018
  35. Nguyen CH, Juang RS, J. Taiwan Inst. Chem. Eng., 99, 166, 2019
  36. Lu K, Wang T, Zhai L, J. Colloid Interface Sci., 539, 553, 2019
  37. Adel M, Ahmed MA, Mohamed AA, J. Phys. Chem. Solids, 149, 109760, 2021
  38. Dashamiri S, Ghaedi M, Asfaram A, Zare F, Wang S, Ultrason. Sonochem., 34, 343, 2017
  39. Chatterjee S, Chatterjee S, Chatterjee BP, Das AR, J. Colloid Interface Sci., 288, 30, 2005
  40. Danu BY, Agorku ES, Ampong FK, Awudza JAM, Torve V, Polym. Sci., 63, 304, 2021
  41. Jeyapragasam T, Mater. Today Proc., 3, 2146, 2016
  42. Jiang GB, Lin ZT, Huang XY, Zheng YQ, Ren CC, Huang CK, Huang ZJ, Int. J. Biol. Macromol., 50, 707, 2012
  43. Borah L, Goswami M, Phukan P, Biochem. Pharmacol.,, 3, 1018, 2015
  44. Rashtbari Y, Afshin S, Hamzezadeh A, Environ. Sci. Pollut. Res., 29, 5194, 2022