Issue
Korean Journal of Chemical Engineering,
Vol.39, No.9, 2542-2547, 2022
Composites of poly(vinyl pyrrolidone) and polarized Ag nanoparticles for CO2 separation
A poly(vinyl pyrrolidone) (PVP)/Ag nanoparticles (AgNPs)/7,7,8,8-Tetracyanoquinodimethane (TCNQ)/ dioctyl phthalate (DOP) composite membrane using positively charged silver nanoparticles was prepared for CO2 separation. Positively polarized silver nanoparticles were generated by TCNQ, known as an electron acceptor for CO2 carrier. In the separation of CO2 and N2, the composite membrane consisting of PVP/AgNPs/TCNQ/DOP showed that only polar CO2 could be selectively separated by a reversible reaction with the positively polarized silver nanoparticles. Furthermore, the addition of DOP as a plasticizer enhanced gas permeance through the glassy PVP, and the CO2/N2 selectivity performance reached 103.8. The PVP/AgNPs/TCNQ/DOP composite membranes were characterized by FTIR spectroscopy, X-ray photoelectron spectroscopy, thermogravimetric analysis, and scanning electron microscopy.
[References]
  1. Li X, Lv X, Ding S, Huang L, Wei Z, Int. J. Greenh. Gas Control., 117, 103658, 2022
  2. Anderson TR, Hawkins E, Jones PD, Endeavour, 40(3), 178, 2016
  3. Dai A, Wiley Interdiscip. Rev. Clim. Change, 2(1), 45, 2011
  4. Johnsson F, Kjärstad J, Rootzén J, Clim. Policy, 19(2), 258, 2019
  5. Köne AC, Büke T, Renew. Sust. Energ. Rev., 14(9), 2906, 2010
  6. Selma L, Seigo O, Dohle S, Siegrist M, Renew. Sust. Energ. Rev., 38, 848, 2014
  7. Bui M, Adjiman CS, Bardow A, Anthony EJ, Boston A, Brown S, Fennell PS, Fuss S, Galindo A, Hackett LA, Energy Environ. Sci., 11(5), 1062, 2018
  8. Guo Y, Tan C, Sun J, Li W, Zhang J, Zhao C, Chem. Eng. J., 381, 122736, 2020
  9. Wang M, Zhang Z, Gong Y, Zhou S, Wang J, Wang Z, Wei S, Guo W, Lu X, Appl. Surf. Sci., 502, 144067, 2020
  10. Brunetti A, Scura F, Barbieri G, Drioli E, J. Membr. Sci., 359(1-2), 115, 2010
  11. Yave W, Car A, Funari SS, Nunes SP, Peinemann K, Macromolecules, 43(1), 326, 2010
  12. Hanioka S, Maruyama T, Sotani T, Teramoto M, Matsuyama H, Nakashima K, Hanaki M, Kubota F, Goto M, J. Membr. Sci., 314(1-2), 1, 2008
  13. Yamasaki A, J. Chem. Eng. Jpn., 36(4), 361, 2003
  14. Koros W, Fleming G, Jordan S, Kim T, Hoehn H, Prog. Polym. Sci, 13(4), 339, 1988
  15. Li J, Chen B, Sep. Purif. Technol., 41(2), 109, 2005
  16. Basu S, Cano-Odena A, Vankelecom IF, Sep. Purif. Technol., 81(1), 31, 2011
  17. Wang H, Hou L, Li Y, Jiang C, Wang Y, Zhu Z, ACS Appl. Mater. Interfaces, 9(21), 17969, 2017
  18. Kim J, Kim S, Jang H, Seo G, Ahn W, Appl. Catal. A: Gen., 453, 175, 2013
  19. Sun J, Li Q, Chen G, Duan J, Liu G, Jin W, Sep. Purif. Technol., 217, 229, 2019
  20. Zeng Y, Zou R, Zhao Y, Adv. Mater., 28(15), 2855, 2016
  21. Olajire AA, J. CO2 Utilization, 17, 137, 2017
  22. Duan K, Wang J, Zhang Y, Liu J, J. Membr. Sci., 572, 588, 2019
  23. Ali A, Pothu R, Siyal SH, Phulpoto S, Sajjad M, Thebo KH, Mater. Sci. Eng. Technol., 2(1), 83, 2019
  24. Vinoba M, Bhagiyalakshmi M, Alqaheem Y, Alomair AA, Pérez A, Rana MS, Sep. Purif. Technol., 188, 431, 2017
  25. Norahim N, Yaisanga P, Faungnawakij K, Charinpanitkul T, Klaysom C, Chem. Eng. Technol., 41(2), 211, 2018
  26. Zhu X, Tian C, Do‐Thanh C, Dai S, ChemSusChem, 10(17), 3304, 2017
  27. Choi Y, Hong GH, Kang SW, J. Nanosci. Nanotechnol., 16(3), 2832, 2016
  28. Kim HY, Kang SW, Sci. Rep., 9(1), 1, 2019
  29. Rhyu SY, Cho Y, Kang SW, J. Ind. Eng. Chem., 85, 75, 2020
  30. Jeon H, Kang SW, Polym. Compos., 40(7), 2954, 2019
  31. Chae IS, Kang SW, Park JY, Lee Y, Lee JH, Won J, Kang YS, Angew. Chem.-Int. Edit., 123(13), 3038, 2011
  32. Oh JH, Kang YS, Kang SW, Chem. Commun., 49(86), 10181, 2013