Issue
Korean Journal of Chemical Engineering,
Vol.39, No.8, 2010-2019, 2022
Experimental study on CO2 bubble dynamics under different solution viscosity and absorbent concentration
Carbon dioxide (CO2) emitted by fossil energy combustion is related to the greenhouse effect. To further study the motion dynamics of CO2 bubbles in various solutions so as to better absorb them, a CO2 bubble experimental platform was built. The growth and motion of a single CO2 bubble were experimented in five concentrations of NaOH, NaHCO3 solutions and five viscosity deionized waters, photographed with a high-speed camera and imported into PyCharm for analysis. Based on this, four kinds of CO2 bubbles were experimentally studied. The results show that the viscosity leads to the increase of rising time; the maximum rise time is 0.518 s when the viscosity is 100 mPa·s, the aspect ratio δ of CO2 bubble in solution, there will be an “L” distribution, and the minimum rise time is close to rising after the bubble is separated from the injector. NaHCO3 inhibits the reaction between NaOH solution and CO2, resulting in the cross-section ratio κ change decreasing. The concentration of NaOH solution most conducive to CO2 absorption is 0.039 g/ml and 0.058 g/ml.
[References]
  1. Binet S, Probst JL, Guilhe CB, Seidel JL, Emblanch C, Peyraube N, Geochim. Cosmochim. Acta, 270, 184, 2020
  2. Li Y, Wang HY, Wang YZ, Zhao J, Huadian Technol., 43, 11, 2021
  3. Schmidt D, Yildiz C, Ströhle J, Epple B, Fuel, 284, 15, 2021
  4. Fan WQ, Pan D, Huang L, Wang Q, Mater. Guide, 35, 17, 2021
  5. Qian X, Deng LF, Wang LF, Shan R, Yuan HR, Mater. Guide, 33, 11, 2019
  6. Xu M, Zhang X, Fan JL, Lin G, Xu D, J. Mining Sci., 6, 06, 2021
  7. Bu XP, Clean Coal Technol., 20, 05, 2014
  8. Ghalya AY, Seddeek MA, Chaos Soliton Fract, 19, 1, 2004
  9. Rodrigue D, Can. J. Chem. Eng., 79, 1, 2001
  10. Li SB, Ma YG, Fu TT, Chem. Eng.-New York, 39, 10, 2011
  11. Bai H, Yeh AC, Ind. Eng. Chem. Res., 36, 6, 1997
  12. Wang Y, Su Y, Hou WX, Fan TY, Xiao YY, Yin R, Li Y, Zhao J, Chem. Manage., 31, 19, 2021
  13. Liu CB, Marine Power Technol., 41, 10, 2021
  14. Garcia M, Knuutila HK, Aronu UE, Gu S, Int. J. Greenh. Gas Con., 78, 11, 2018
  15. Li XS, Liu J, Jiang WF, Gao G, Wu F, Luo C, Qi L, Zhang C, Sep. Purif. Technol., 275, 15, 2021
  16. Niegodajew P, Asendrych D, Appl. Math. Model., 40, 23, 2016
  17. Kofal MF, Mustafa A, Ismail AF, DashtArzhandi MR, Matsuura T, J. Nat. Gas Sci. Eng., 31, 4, 2016
  18. Ansaloni L, Hartono A, Awais M, Knuutila HK, Deng L, Chem. Eng. J., 359, 11, 2018
  19. Xu L, Qin Y, Liu L, Xiao J, Ding Z, Korean J. Chem. Eng., 38, 1032, 2021
  20. Nilavuckkarasi RK, Muthumari P, Ambedkar B, Chem. Eng. Process., 151, 3, 2020
  21. Pevida C, Drage TC, Snape CE, Carbon, 46, 11, 2008
  22. Wang K, Gu F, Clough PT, Chem. Eng. J., 408, 12, 2020
  23. Wang MH, Liu HM, Xie YL, Gao S, Ding J, Wang YX, Ion Exchange Adsorption, 37, 04, 2021
  24. Falzone G, Mehdipour I, Neithalath N, Bauchy M, Sant G, AIChE J., 67, 36, 2021
  25. Silva B, Silva D, Silva A, J. Sol-Gel Sci. Technol., 97, 6, 2021
  26. Kolachana V, Cholkar K, Kayani WM, Kouassi GK, Gowda NMM, Am. J. Org. Chem., 2(1), 18, 2012
  27. Zhang L, Ju SX, Yan YF, Zhang ZE, J. Chem. Eng., 65, 06, 2014
  28. Shadloo A, Peyvandi K, Shojaeian A, J. Mol. Liq., 347, 2, 2021
  29. Saikiaa J, Saikiab A, Saikiac D, Mater. Today, 09, 535, 2020
  30. Ding ZY, Ding R, Zheng X, Chen X, J. Fujian Normal University, 37, 06, 2021
  31. Shi YJ, Wang XY, Zhang Y, Wei LM, Micro Nano Electronic Technol., 56, 04, 2019
  32. Ritesh P, Kumar MS, J. Ind. Eng. Chem., 90, 10, 2020
  33. Li H, Liu Z, Chen JH, Sun BJ, Guo YL, He HK, Exp. Therm. Fluid Sci., 88, 11, 2017
  34. Shohei A, Kosuke H, Shigeo H, Akio T, Exp. Therm. Fluid Sci., 96, 9, 2018