Issue
Korean Journal of Chemical Engineering,
Vol.39, No.10, 2849-2860, 2022
IR-initiated preparation method of high performance nanofiltration membranes using graft polymerization of acrylic acid onto polyacrylonitrile surface
A new facile, cost-effective and safe approach is introduced for the modification of polyacrylonitrile (PAN) membrane surface by a polymerization process in order to improve hydrophilicity and antifouling. For this purpose, membrane activated by IR-initiated, and acrylic acid (AA) as a monomer was successfully grafted on the membrane surface. The surface properties of membranes were characterized by means of various techniques: infrared spectroscopy, zeta potential, water contact angle, atomic force microscopy (AFM), and scanning electron microscopy (SEM). The experimental results indicate that the membrane surface becomes more hydrophilic by reducing the contact angle from 67.1° to 52.5° . The existence of hydrophilic chains on the membrane surface facilitates the creation of a negative charge on the membrane surface unto -2.99 mV (from 3.51 mV in based-membrane). The separation performance of the modified membrane showed a desirable yield. For a membrane photografted for 25 min with acrylic acid solution (2 wt%), the retention of Na2SO4, MgSO4, NaCl, and CaCl2 was in the order of 81%, 67%, 34%, and 28%, respectively. The membrane retention is expressed the values of 90.37%, 87.17%, and 79.5% for Acid Blue 92, Acid Red 114, and Ibuprofen. The optimized NF membrane showed a permeability factor (Lp) of 6.48 L·m-2·h-1·bar-1. Furthermore, the surface modification of the PAN membrane via the IR-induced graft polymerization exhibits an enhancement of the membrane antifouling property.
[References]
  1. Jern NW, Industrial wastewater treatment, Imperial College Press, London (2006).
  2. Alharbi NS, Hu B, Hayat T, Rabah SO, Alsaedi A, Zhuang L, Wang X, Front. Chem. Sci. Eng., 14, 1124, 2020
  3. Srikanth G, Membrane separation processes: Technology and business opportunities, Water Conditioning & Purification, 1-4 (2008).
  4. Karimnezhad H, Navarchian AH, Tavakoli T, Zinadini S, React. Funct. Polym., 135, 77, 2018
  5. Khulbe KC, Feng C, Matsuura T, J. Appl. Polym. Sci., 115, 855, 2010
  6. Pinem JA, Wardani AK, Aryanti PTP, Khoiruddin K, Wenten IG, Conf. Ser.-Mater. Sci. Eng., 547, 012054, 2019
  7. Chen H, Kong L, Wang Y, J. Membr. Sci., 487, 109, 2015
  8. Wavhal DS, Fisher ER, Langmuir, 19, 79, 2003
  9. Balzani V, Ceroni P, Juris A, Photochemistry and photophysics, Wiley-VCH, Weinheim (2014).
  10. Goma-Bilongo T, Akbari A, Clifton MJ, Remigy JC, J. Membr. Sci., 278, 308, 2006
  11. Akbari A, Desclaux S, Rouch JC, Aptel P, Remigy JC, J. Membr. Sci., 286, 342, 2006
  12. Bequet S, Abenoza T, Aptel P, Remiigy JM, Ricard A, Desalination, 131, 299, 2000
  13. Zhu LP, Zhu BK, Xu L, Feng YX, Liu F, Xu YY, Appl. Surf. Sci., 253, 6052, 2007
  14. Stano L, Stano M, Durina P, Int. J. Hydrog. Energy, 45, 80, 2019
  15. Qiu C, Zhang QTNL, Ping Z, Sep. Purif. Technol., 51, 325, 2006
  16. Abedi M, Chenar MP, Sadeghi M, Fibers Polym., 16, 788, 2015
  17. Ryšánek P, Benada O, Tokarský J, Syrový M, Čapková P, Pavlík J, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 105, 110151, 2019
  18. Pérez-Álvarez L, Ruiz-Rubio L, Moreno I, Vilas-Vilela JL, Polymer, 11(11), 1, 2019
  19. Chittrakarn T, Tirawanichakul Y, Sirijarukul S, Yuenyao C, Surf. Coat. Technol., 296, 157, 2016
  20. Kim KS, Lee KH, Cho K, Park CE, J. Membr. Sci., 199, 135, 2002
  21. Wang W, Huang X, Yin H, Fan W, Zhang T, Li L, Mao C, Biomed. Mater., 10, 065022, 2015
  22. Kravets LI, Gilman AB, Dinescu G, Russ. J. Gen. Chem., 85, 1284, 2015
  23. Chung YT, Ng LY, Mohammad AW, J. Ind. Eng. Chem., 20, 1549, 2014
  24. Yu HY, Xu ZK, Lei H, Hu MX, Yang Q, Sep. Purif. Technol., 53, 119, 2007
  25. Vatanpour V, Esmaeili M, Safarpour M, Ghadimi A, Adabi J, React. Funct. Polym., 134, 74, 2019
  26. Homayoonfal M, Akbari A, Mehrnia MR, Desalination, 263, 217, 2010
  27. Helin H, Na L, Linlin W, Hui Z, Guangxia W, Zonghuan Y, Xiangwei L, Lianyi T, J. Environ. Sci., 20, 565, 2008
  28. Huang D, Yang P, Tang X, Luo L, Sunden B, Trends Food Sci. Technol., 110, 765, 2021
  29. Delfiya DA, Prashob K, Murali S, Alfiya PV, Samuel MP, Pandiselvam R, J. Food Process Eng., 45(6), e13810, 2022
  30. Aboud SA, Altemimi AB, Al-HiIphy ARS, Yi-Chen L, Cacciola F, Molecules, 24(22), 1, 2019
  31. Alaei B, Dibagar N, Chayjan RA, Kaveh M, Taghinezhad E, Quality Assurance Safety Crops Foods, 10(4), 371, 2018
  32. Silitonga AS, Mahlia TMI, Kusumo F, Dharma S, Sebayang AH, Sembiring RW, Shamsuddin AH, Renew. Energy, 133, 520, 2019
  33. Schieke SM, Schroeder P, Krutmann J, Photodermatol. Photoimmunol. Photomed., 19, 228, 2003
  34. Rahal M, Graff B, Toufaily J, Hamieh T, Ibrahim-Ouali M, Dumur F, Lalevée J, Catalysts, 11, 1269, 2021
  35. Breloy L, Yavuz O, Yilmaz I, Yagci Y, Versace DL, Polym. Chem., 12, 4291, 2021
  36. Li Y, Patrick BO, Dolphin D, J. Org. Chem., 74, 5237, 2009
  37. Davey CJ, Low ZX, Wirawan RH, Patterson DA, J. Membr. Sci., 526, 221, 2017
  38. Sabde AD, Trivedi MK, Ramachandhran V, Hanra MS, Misra BM, Desalination, 114, 223, 1997
  39. Gung BW, Taylor RT, J. Chem. Educ., 81, 1630, 2004
  40. Rufchahi EOM, Pouramir H, Yazdanbakhsh MR, Yousefi H, Bagheri M, Rassa M, Chinese Chem. Lett., 24, 425, 2013
  41. Khulbe KC, Feng CY, Matsuura T, Synthetic polymeric membranes characterization by atomic force microscopy, Springer Laboratory Manuals in Polymer Science (2007).
  42. Bessières A, Meireles A, Coratger M, Beauvillain R, Sanchez V, J. Membr. Sci., 109, 271, 1996
  43. Chen L, Tian Y, Cao CQ, Zhang J, Li ZN, Water Res., 46, 2693, 2012
  44. Liu C, Chen L, Zhu L, Water Res., 119, 33, 2017
  45. Schäfer A, Fane AG, Waite TD, Nanofiltration principle and application, Elsevier Publication. Oxford (2005).
  46. Fang HHP, Shi X, J. Membr. Sci., 264, 161, 2005