Issue
Korean Journal of Chemical Engineering,
Vol.39, No.10, 2817-2825, 2022
Optimization of Pt loading on the counter electrode for efficient and bifacial dye-sensitized solar cells with polymer gel electrolyte
We examined the optimized conditions for preparing Pt/FTO glass counter electrodes (CEs) for the fabrication of highly efficient, bifacial, and quasi-solid-state dye-sensitized solar cells (QSS-DSSCs). The Pt/FTO glass CEs were prepared via thermal decomposition, and the molar concentration of the employed Pt precursor solution was controlled in the range of 5-40mM. Impedance analysis and Tafel polarization curves revealed that electrocatalytic activity was optimized at 20mM, whereas specular transmittance gradually decreased with increasing concentration of the precursor solution. When the CEs were applied to bifacial QSS-DSSCs employing a polymer gel electrolyte, the power conversion efficiency (PCE) was maximized at 20mM under front illumination because the condition resulted in the highest electrocatalytic activity. Meanwhile, PCE under back illumination was optimized at 10 mM because of the larger incident light loss by the CEs at higher concentrations. Because the influence of the inferior performance under back illumination was more dominant in bifacial operations, the average PCE under front and back illumination was optimized at 10 mM.
[References]
  1. Das UK, Tey KS, Seyedmahmoudian M, Mekhilef S, Idris MYI, Van Deventer W, Horan B, Stojcevski A, Renew. Sust. Energ. Rev., 81, 912, 2018
  2. Cheng Y, Yang S, Hsu C, Chem. Rev., 109, 5868, 2009
  3. Yuan J, Zhang Y, Zhou L, Zhang G, Yip H, Lau T, Lu X, Zhu C, Peng H, Johnson PA, Joule, 3, 1140, 2019
  4. Aernouts T, Vanlaeke P, Geens W, Poortmans J, Heremans P, Borghs S, Mertens R, Andriessen R, Leenders L, Thin Solid Films, 451, 22, 2004
  5. O'regan B, Grätzel M, Nature, 353, 737, 1991
  6. Hao S, Wu J, Huang Y, Lin J, Sol. Energy, 80, 209, 2006
  7. Han L, Islam A, Chen H, Malapaka C, Chiranjeevi B, Zhang S, Yang X, Yanagida M, Energy Environ. Sci., 5, 6057, 2012
  8. Yang J, Kim J, Yu JH, Ahn T, Lee H, Choi T, Kim Y, Joo J, Ko MJ, Hyeon T, Phys. Chem. Chem. Phys., 15, 20517, 2013
  9. Li W, Pan Z, Zhong X, J. Mater. Chem. A, 3, 1649, 2015
  10. Kim J, Yang J, Yu JH, Baek W, Lee C, Son HJ, Hyeon T, Ko MJ, ACS Nano, 9, 11286, 2015
  11. Kamat PV, J. Phys. Chem. C, 112, 18737, 2008
  12. Mei A, Li X, Liu L, Ku Z, Liu T, Rong Y, Xu M, Hu M, Chen J, Yang Y, Science, 345, 295, 2014
  13. Yin W, Shi T, Yan Y, Appl. Phys. Lett., 104, 063903, 2014
  14. Jošt M, Köhnen E, Morales-Vilches AB, Lipovšek B, Jäger K, Macco B, Al-Ashouri A, Krč J, Korte L, Rech B, Energy Environ. Sci., 11, 3511, 2018
  15. Kumar D, Wong K, Mater. Today Energy, 5, 243, 2017
  16. Margulis GY, Christoforo MG, Lam D, Beiley ZM, Bowring AR, Bailie CD, Salleo A, McGehee MD, Adv. Energy Mater., 3, 1657, 2013
  17. Otaka H, Kira M, Yano K, Ito S, Mitekura H, Kawata T, Matsui F, J. Photochem. Photobiol. A-Chem., 164, 67, 2004
  18. Kawata K, Tamaki K, Kawaraya M, JPST, 28, 415, 2015
  19. Naim W, Novelli V, Nikolinakos I, Barbero N, Dzeba I, Grifoni F, Ren Y, Alnasser T, Velardo A, Borrelli R, JACS Au., 1, 409, 2021
  20. Hwang D, Nam JE, Jo HJ, Sung S, J. Power Sources, 361, 87, 2017
  21. Tai Q, Chen B, Guo F, Xu S, Hu H, Sebo B, Zhao X, ACS Nano., 5, 3795, 2011
  22. Xu S, Luo Y, Liu G, Qiao G, Zhong W, Xiao Z, Luo Y, Ou H, Electrochim. Acta, 156, 20, 2015
  23. Hübner A, Aberle AG, Hezel R, Appl. Phys. Lett., 70, 1008, 1997
  24. Ito S, Zakeeruddin SM, Comte P, Liska P, Kuang D, Gratzel M, Nat. Photonics, 2, 693, 2008
  25. Wu J, Tang Z, Huang Y, Huang M, Yu H, Lin J, J. Power Sources, 257, 84, 2014
  26. Song MY, Chaudhari KN, Park J, Yang D, Kim JH, Kim M, Lim K, Ko J, Yu J, Appl. Energy, 100, 132, 2012
  27. Fang X, Ma T, Guan G, Akiyama M, Kida T, Abe E, J. Electroanal. Chem., 570, 257, 2004
  28. Kubo W, Murakoshi K, Kitamura T, Yoshida S, Haruki M, Hanabusa K, Shirai H, Wada Y, Yanagida S, J. Phys. Chem. B, 105, 12809, 2001
  29. Lan Z, Wu J, Lin J, Huang M, Yin S, Sato T, Electrochim. Acta, 52, 6673, 2007
  30. Palomares E, Clifford JN, Haque SA, Lutz T, Durrant JR, J. Am. Chem. Soc., 125, 475, 2003
  31. Xia J, Masaki N, Lira-Cantu M, Kim Y, Jiang K, Yanagida S, J. Am. Chem. Soc., 130, 1258, 2008
  32. Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H, Chem. Rev., 110, 6595, 2010
  33. Stergiopoulos T, Arabatzis IM, Katsaros G, Falaras P, Nano Lett., 2, 1259, 2002
  34. Devrim Y, Arıca ED, Int. J. Hydrog. Energy, 44, 18951, 2019
  35. Yang X, Zheng J, Zhen M, Meng X, Jiang F, Wang T, Shu C, Jiang L, Wang C, Appl. Catal. B: Environ., 121, 57, 2012
  36. Rosseler O, Ulhaq-Bouillet C, Bonnefont A, Pronkin S, Savinova E, Louvet A, Keller V, Keller N, Appl. Catal. B: Environ., 166, 381, 2015
  37. Xue X, Lu T, Liu C, Xu W, Su Y, Lv Y, Xing W, Electrochim. Acta, 50, 3470, 2005
  38. Casella IG, Desimoni E, Electroanalysis, 8, 447, 1996
  39. Kumar PN, Kolay A, Kumar SK, Patra P, Aphale A, Srivastava AK, Deepa M, ACS Appl. Mater. Interfaces, 8, 27688, 2016
  40. Roy-Mayhew JD, Bozym DJ, Punckt C, Aksay IA, ACS Nano, 4, 6203, 2010
  41. Kim J, Lee KJ, Kang SH, Shin J, Sung Y, J. Phys. Chem. C, 115, 19979, 2011
  42. Jaafar H, Ain MF, Ahmad ZA, Opt. Quant. Electron., 52, 221, 2020
  43. Hsieh TY, Wei TC, Zhai P, Feng SP, Ikegami M, Miyasaka T, J. Power Sources, 283, 351, 2015
  44. Wu M, Lin X, Wang Y, Wang L, Guo W, Qi D, Peng X, Hagfeldt A, Grätzel M, Ma T, J. Am. Chem. Soc., 134, 3419, 2012
  45. Wang YC, Wang DY, Jiang YT, Chen HA, Chen CC, Ho KC, Chou HL, Chen CW, Angew. Chem.-Int. Edit., 52, 6694, 2013
  46. Reference Solar Spectral Irradiance: Air Mass 1.5; American Society for Testing and Materials: West Conshohocken, PA (2021)
  47. Wang M, Chamberland N, Breau L, Moser JE, Humphry-Baker R, Marsan B, Zakeeruddin SM, Grätzel M, Nat. Chem., 2, 385, 2010