Issue
Korean Journal of Chemical Engineering,
Vol.39, No.9, 2318-2323, 2022
Facile microfluidic method for measuring the relaxation time of dilute polymer solution based on viscoelastic particle focusing
The relaxation time of a viscoelastic fluid is an essential parameter for characterizing the degree of elasticity. However, measuring the relaxation time of dilute polymer solutions with low viscosity using conventional rotational rheometers remains challenging because of the low instrument sensitivity. In this study, we demonstrate an efficient microfluidic method for measuring the relaxation time of a dilute polymer solution by utilizing elasticitydriven lateral particle migration in a microchannel. First, the previous theoretical model was refined, based on the Oldroyd-B constitutive equation, in order to predict lateral particle migration in a viscoelastic fluid with constant shear viscosity, considering the inlet and finite particle size effects. This model was utilized to determine the relaxation times of dilute poly(ethylene oxide) (PEO) aqueous solutions. Direct comparison of the measured relaxation times with those obtained from Zimm theory verified the reliability of the proposed method. The current approach is expected to be useful in characterizing the relaxation times of a wide range of polymer solutions.
[References]
  1. Bird RB, Armstrong RC, Hassager O, Dynamics of polymeric liquids, Wiley Interscience, New York (1987).
  2. Larson RG, The structure and rheology of complex fluids, Oxford University Press, New York (1999).
  3. Kang K, Lee SS, Hyun K, Lee SJ, Kim JM, Nat. Commun., 4, 2567, 2013
  4. Zilz J, Schafer C, Wagner C, Poole RJ, Alves MA, Lindner A, Lab Chip, 14, 351, 2014
  5. Macosko CW, Rheology: principles, measurements, and applications, Wiley-VCH (1994).
  6. Rodd LE, Scott TP, Cooper-White JJ, McKinley GH, Appl. Rheol., 15, 12, 2004
  7. Del Giudice F, D'Avino G, Greco F, De Santo I, Netti PA, Maffettone PL, Lab Chip, 15, 783, 2015
  8. Giudice FD, Haward SJ, Shen AQ, J. Rheol., 61, 327, 2017
  9. Clasen C, Plog JP, Kulicke WM, Owens M, Macosko C, Scriven LE, Verani M, McKinley GH, J. Rheol., 50, 849, 2006
  10. Kim JM, Korean J. Chem. Eng., 32, 2406, 2015
  11. Kim DY, Kim JM, Korean J. Chem. Eng., 36, 837, 2019
  12. Shiriny A, Bayareh M, Nadooshan AA, Korean J. Chem. Eng., 38, 1686, 2021
  13. Kim B, Lee SS, Yoo TH, Kim S, Kim SY, Choi SH, Kim JM, Sci. Adv., 5, eaav4819, 2019
  14. Guazzelli E, Morris JF, A physical introduction to suspension dynamics, Cambridge University Press, Cambridge (2012).
  15. Ho BP, Leal LG, J. Fluid Mech., 76, 783, 1976
  16. Karnis A, Mason SG, Goldsmith HL, Nature, 200, 159, 1963
  17. Leshansky AM, Bransky A, Korin N, Dinnar U, Phys. Rev. Lett., 98, 234501, 2007
  18. D'Avino G, Romeo G, Villone MM, Greco F, Netti PA, Maffettone PL, Lab Chip, 12, 1638, 2012
  19. Romeo G, D'Avino G, Greco F, Netti PA, Maffettone PL, Lab Chip, 13, 2802, 2013
  20. D'Avino G, Greco F, Maffettone PL, Annu. Rev. Fluid Mech., 49, 341, 2017
  21. James DF, Annu. Rev. Fluid Mech., 41, 129, 2009
  22. Graessley WW, Polymer, 21, 258, 1980
  23. Tirtaatmadja V, McKinley GH, Cooper-White JJ, Phys. Fluids, 18, 043101, 2006
  24. Rubinstein M, Colby RH, Polymer physics, Oxford University Press, Oxford (2003).
  25. Yang S, Kim JY, Lee SJ, Lee SS, Kim JM, Lab Chip, 11, 266, 2011
  26. Rodd LE, Scott TP, Boger DV, Cooper-White JJ, McKinley GH, J. Non-Newton. Fluid Mech., 129, 1, 2005
  27. Rodd LE, Cooper-White JJ, Boger DV, McKinley GH, J. Non-Newton. Fluid Mech., 143, 170, 2007
  28. Casanellas L, Alves MA, Poole RJ, Lerouge S, Lindner A, Soft Matter, 12, 6167, 2016
  29. Liu YG, Jun YG, Steinberg V, J. Rheol., 53, 1069, 2009