Issue
Korean Journal of Chemical Engineering,
Vol.39, No.12, 3369-3376, 2022
Destruction of oxytetracycline using a microwave-assisted fused TiO2 photocatalytic oxidation system
We developed a novel and efficient degradation process for oxytetracycline (OTC), an antibiotic that remains in the aquatic environment and affects humans and animals. OTC was decomposed by applying a fusion TiO2 photocatalytic oxidation process adding microwaves, and various unit technologies and their fusion effects were investigated. As the microwave power increased, the decomposition efficiency increased, and the highest decomposition rate was shown in the neutral pH reaction solution. The decomposition rate was greatly increased by the addition of hydrogen peroxide, and it showed a synergistic effect that the decomposition efficiency was doubled by fusion with other processes. Eleven intermediate products of OCT decomposition were detected by liquid chromatography0mass spectrometry; CO2, H2O, NH4 +, and NO3 by active oxidizing species, such as OH radicals generated by the microwave-assisted fused TiO2 photocatalytic oxidation process were mineralized.
[References]
  1. Vaz S, Chem. Biol. Technol. Agric., 3, 6, 2016
  2. Liu Q, Yu H, Zeng F, Li X, Sun J, Hu X, Pan Q, Li C, Lin H, Su ZM, J. Colloid Interface Sci., 579, 119, 2020
  3. Ren X, Wang Z, Gao B, Liu P, Li J, Chemosphere, 173, 563, 2017
  4. Elena MC, Carmen GB, Sigrid S, Oliver G, Environ. Pollut., 148, 570, 2007
  5. Rok J, Wrzésniok D, Beberok A, Otręba M, Delijewski M, Buszman E, Toxicol. Vitro, 48, 26, 2018
  6. Almeida AR, Domingues I, Henriques I, Environ. Pollut., 272, 116371, 2021
  7. Yan W, Guo Y, Xiao Y, Wang S, Ding R, Jiang J, Gang H, Wang H, Yang J, Zhao F, Water Res., 142, 105, 2018
  8. Zhang Y, Geißen SU, Gal C, Chemosphere, 73, 1151, 2008
  9. Wu S, Hu H, Lin Y, Zhang J, Hu YH, Chem. Eng. J., 382, 122842, 2020
  10. Lee H, Park SH, Park YK, Kim SJ, Seo SG, Ki SJ, Jung SC, Chem. Eng. J., 278, 259, 2015
  11. Lee H, Park YK, Kim SJ, Kim BH, Yoon HS, Jung SC, J. Ind. Eng. Chem., 35, 205, 2016
  12. Ki SJ, Jeon KJ, Park YK, Jeong S, Lee H, Jung SC, Catal. Today, 293, 15, 2017
  13. Park SH, Kim SJ, Seo SG, Jung SC, Nanoscale Res. Lett., 5, 1627, 2010
  14. Jung SC, Water Sci. Technol., 63, 1491, 2011
  15. Jeong S, Lee H, Park H, Jeon KJ, Park YK, Jung SC, Catal. Today, 307, 65, 2018
  16. Lee DJ, Park YK, Kim SJ, Lee H, Jung SC, Korean J. Chem. Eng., 32, 1188, 2015
  17. Gross U, Ubelis A, Spietz P, Burrows J, J. Phys. D-Appl. Phys., 33, 1588, 2000
  18. Behar-cohen F, Baillet G, Krutmann J, Pena-garcia P, Clin. Ophthalmol., 8, 87, 2013
  19. Jung SC, Korean J. Chem. Eng., 25, 364, 2008
  20. Kim SJ, Kim SC, Seo SG, Lee DJ, Lee H, Park SH, Jung SC, Catal. Today, 164, 384, 2011
  21. Bennemla M, Chabani M, Amrane A, Int. J. Chem. Kinet., 48, 464, 2016
  22. Kong W, Li C, Dolhi JM, Li S, He J, Qiao M, Chemosphere, 87, 542, 2012
  23. Li R, Jia Y, Wu J, Zhen Q, RSC Adv., 5, 40764, 2015
  24. Jung SC, Lee H, Ki SJ, Kim SJ, Park YK, Catal. Today, 348, 270, 2020
  25. Zouanti M, Bezzina M, Dhib R, Environ. Eng. Res., 25, 316, 2020
  26. Zhang S, Zhao S, Huang S, Hu B, Wang M, Zhang Z, He L, Du M, Chem. Eng. J., 420, 130516, 2021
  27. Niu J, Ding S, Zhang L, Zhao J, Feng C, Chemosphere, 93, 1, 2013
  28. Liu Y, He X, Fu Y, Dionysiou DD, J. Hazard. Mater., 305, 229, 2016
  29. Pereira JHOS, Vilar VJP, Borges MT, González O, Esplugas S, Boaventura RAR, Sol. Energy, 85, 2732, 2011