Issue
Korean Journal of Chemical Engineering,
Vol.39, No.10, 2691-2701, 2022
Novel NO removal using combined sodium erythorbate and FeⅡ EDTA system
To solve the difficulty of easy oxidation of FeIIEDTA in nitric oxide removal, FeIIEDTA combined with sodium erythorbate (SE) was employed for nitric oxide absorption. SE quickly reduced FeIIIEDTA to FeIIEDTA and maintained FeIIEDTA activity for a long time in the air. The influences of various operating parameters such as FeIIEDTA concentration, SE concentration, original pH value and temperature on NO removal in the bubbling device were examined preliminarily. The results reveal that the SE significantly enhanced nitric oxide absorption with FeIIEDTA. Nitric oxide absorption efficiency increased with the increase in the concentration of absorbent components or the decrease in temperature. Weak alkalinity (about pH 8.0) is beneficial to NO absorption. Besides, the NO removal efficiency continually decreased as the NO or O2 concentration increased, while the NO removal efficiency increased first and then decreased as the SO2 concentration increased. However, pH and temperature hardly affected nitric oxide absorption efficiency at FeIIEDTA with high concentration. Finally, the kinetic studies demonstrated that NO absorption by mixed FeIIEDTA and SE was more effective in reducing total mass transfer resistance and enlarging the NO flux compared with the normal FeIIEDTA approach. The absorption process was controlled by the liquid film.
[References]
  1. Zhang Z, Zhou S, Xi H, Shreka M, Fuel, 288, 119709, 2021
  2. Rahman Z, Wang X, Zhang J, Baleta J, Vujanović M, Tan H, J. Energy Inst., 94, 263, 2021
  3. Zhu M, Shao Q, Pi Y, Guo J, Huang B, Qian Y, Huang X, Small, 13, 1701295, 2017
  4. Hu H, Fan X, Gong X, Zhao R, Wang D, Chem. Eng. Process., 166, 108466, 2021
  5. Zhu M, Shao Q, Qian Y, Huang X, Nano Energy, 56, 330, 2019
  6. He F, Zhu X, Chen X, Ding J, Chin. J. Chem. Eng., 28, 2918, 2020
  7. Zhu T, Ding J, Shao Q, Qian Y, Huang X, ChemCatChem, 11, 689, 2019
  8. Cai WJ, Tang ZP, Li JW, Fuel Process. Technol., 140, 82, 2015
  9. Jiang W, Xu Q, Wei X, J. Hazard. Mater., 374, 50, 2019
  10. Cheon S, Kim SH, Yoon HC, Han JI, Energy Fuels, 34, 9940, 2020
  11. Liu S, Liu Z, Yang J, Sun Y, Nengzi LC, Chen L, Yang Y, Fuel, 289, 119936, 2021
  12. Sada E, Kumazawa H, Takada Y, Ind. Eng. Chem. Fundam., 23, 60, 1984
  13. Chang SG, Littlejohn D, Lynn S, Environ. Sci. Technol., 17, 649, 1983
  14. Wang S, Qi Z, Gu Z, Wang Z, Ping Z, J. Energy Inst., 90, 2528, 2016
  15. Yan B, Yang J, Guo M, Chen G, Li Z, Ma S, J. Ind. Eng. Chem., 20, 2528, 2014
  16. Yang X, Yang L, Dong L, Long X, Yuan W, Energy Fuels, 25, 4248, 2015
  17. Xiang K, Liu H, Yang B, Zhang C, Yang S, Liu Z, Liu C, Xie X, Chai L, Min X, Environ. Sci. Pollut. Res., 23, 8113, 2016
  18. Lefan M, Zhiquan T, Junfeng Z, J. Air Waste Manage. Assoc., 54, 1543, 2004
  19. Dong X, Yu Z, Zhou J, Li H, Wang X, Chen M, J. Chem. Technol. Biotechnol., 89, 111, 2013
  20. Zhu X, He F, Xia M, Liu H, Ding J, RSC Adv., 9, 24386, 2019
  21. Harvey AE, Smart JA, Amis ES, Anal. Chem., 27, 26, 1955
  22. He F, Deng X, Chen M, Fuel, 199, 523, 2017
  23. Chinese Health Ministry, National Food Safety Standard, GB 5009.33 (2010).
  24. Seibig S, van Eldik R, Inorg. Chem., 36, 4115, 1997
  25. Chen J, Lin C, Zhang M, Jin T, Qian Y, ChemElectroChem, 7, 3311, 2020
  26. Bendich A, Machlin LJ, Scandurra O, Burton GW, Wayner DDM, Adv. Free Radical Bio. Med., 2, 419, 1986
  27. Suchecki TT, Sada E, Kumazawa H, Ind. Eng. Chem. Res., 30, 2201, 1991
  28. He F, Zhu X, Chen X, Ding J, Asia-Pac. J. Chem. Eng., 15, e2397, 2020
  29. He F, Zhu X, Chen X, Qian Y, Ding J, J. Chem. Technol. Biotechnol., 95, 1392, 2020
  30. He F, Deng X, Chen M, Fuel, 199, 523, 2017
  31. Zhang SH, Li W, Wu CZ, Chen H, Shi Y, Appl. Microbiol. Biotechnol., 76, 1181, 2007
  32. Li N, Zhang Y, Li Y, Chen M, Dong X, Zhou J, J. Chem. Technol. Biotechnol., 88, 311, 2013
  33. Chang SG, Littlejohn D, Lynn S, Environ. Sci. Technol., 17, 649, 1983
  34. Weisweiler W, Blumhofer R, Westermann T, Chem. Eng. Process., 20, 155, 1986
  35. He F, Zhu X, Chen X, Qian Y, Ding J, J. Chem. Technol. Biotechnol., 95, 1392, 2020
  36. Mohajeri L, Aziz HA, Isa MH, Zahed MA, Bioresour. Technol., 101, 893, 2010
  37. Zhu T, Liu S, Huang B, Shao Q, Wang M, Li F, Tan X, Pi Y, Weng SC, Huang B, Hu Z, Wu J, Qian Y, Huang X, Energy Environ. Sci., 14, 3194, 2021
  38. Wu Y, Zhou S, Qin F, Ye X, Zheng K, J. Hazard. Mater., 180, 456, 2010
  39. Chien TW, Hsueh HT, Chu BY, Chu H, Process Saf. Environ. Protect., 87, 300, 2009
  40. Wang F, Research of nitric oxide complexing absorbed by FeIIEDTA, North University of China, Taiyuan (2015).
  41. Chen M, Deng X, He F, Energy Fuels, 30, 1183, 2016
  42. Zhu HS, Mao YP, Yang XJ, Yu C, Long XL, Yuan WK, Sep. Purif. Technol., 74, 1, 2010
  43. Duo Y, Wang X, He J, Zhang S, Pan H, Chen J, Chen J, Environ. Sci. Pollut. Res., 26, 28808, 2019
  44. Zhu H, Nie Z, Hu Y, Wang J, Bai H, Li Y, Guo Q, Wang C, Energy Fuels, 33, 8998, 2019
  45. He F, Deng X, Chen M, Chemosphere, 168, 623, 2017
  46. He F, Zhu X, Chen X, Ding J, Fuel, 284, 119070, 2021