Issue
Korean Journal of Chemical Engineering,
Vol.39, No.10, 2754-2763, 2022
Temperature-swing transesterification for the coproduction of biodiesel and ethyl levulinate from spent coffee grounds
This study introduces a temperature swing method for simultaneously producing biodiesel and ethyl levulinate through in-situ transesterification of spent coffee grounds. Effects of temperature and the amounts of catalyst and ethanol were investigated and it was found that the temperature predominantly affects the yield. Response surface methodology was employed to find the optimal conditions for maximizing biodiesel and ethyl levulinate yield. The highest biodiesel yield of 14.91±0.83 wt% was found at 140℃, while the highest ethyl levulinate yield of 3.29±0.15 wt% was found at 160℃. The maximum ethyl levulinate yield occurs at higher temperature than biodiesel due to decomposition of cellulose to produce ethyl levulinate, while the biodiesel yield decreases at elevated temperature due to unwanted humin formation. The proposed swing operation of the optimal temperature from 160 to 140℃ gives the highest yield of 15.02 wt% biodiesel and 2.76 wt% ethyl levulinate in the single-pot process.
[References]
  1. Lim HS, Kim Y, Kang D, Lee M, Jo A, Lee JW, ACS Catal., 11, 12220, 2021
  2. Zhang JS, Zhao Y, Akins DL, Lee JW, J. Phys. Chem. C, 115, 8386, 2011
  3. Kim M, Yang J, Kim B, Lee JW, Korean J. Chem. Eng., 37, 1933, 2020
  4. Kang S, Realff MJ, Yuan Y, Chance R, Lee JH, Korean J. Chem. Eng., 39, 1524, 2022
  5. Yadav AK, Khan ME, Pal A, Korean J. Chem. Eng., 34, 340, 2017
  6. Park J, Kim B, Son J, Lee JW, Bioresour. Technol., 249, 494, 2018
  7. Dey S, Reang NM, Das PK, Deb M, J. Clean Prod., 286, 124981, 2021
  8. Singh D, Sharma D, Soni SL, Sharma S, Sharma PK, Jhalani A, Fuel, 262, 116553, 2020
  9. Kim B, Heo HY, Son J, Yang J, Chang YK, Lee JH, Lee JW, Algal Res., 41, 101557, 2019
  10. Mata TM, Martins AA, Caetano NS, Renew. Sust. Energ. Rev., 14, 217, 2010
  11. ICO, World Coffee Consumption, 2020.
  12. Fernandes AS, Mello FVC, Thode S, Carpes RM, Honorio JG, Marques MRC, Felzenszwalb I, Ferraz ERA, Ecotox. Environ. Safe., 141, 30, 2017
  13. Mata TM, Martins AA, Caetano NS, Bioresour. Technol., 247, 1077, 2018
  14. Campos-Vega R, Loarca-Piña G, Vergara-Castañeda HA, Oomah BD, Trends Food Sci. Technol., 45, 24, 2015
  15. Vandeponseele A, Draye M, Piot C, Chatel G, Green Chem., 22, 8544, 2020
  16. Go AW, Sutanto, Ong LK, Tran-Nguyen PL, Ismadji S, Ju YH, Renew. Sust. Energ. Rev., 60, 284, 2016
  17. Skorupskaite V, Makareviciene V, Gumbyte M, Fuel Process. Technol., 150, 78, 2016
  18. Kim B, Park J, Son J, Lee JW, Bioresour. Technol., 244, 423, 2017
  19. Mallick N, Bagchi SK, Koley S, Singh AK, Front. Microbiol., 7, 1019, 2016
  20. Im H, Kim B, Lee JW, Bioresour. Technol., 193, 386, 2015
  21. Kim B, Im H, Lee JW, Bioresour. Technol., 185, 421, 2015
  22. Park J, Kim B, Lee JW, Bioresour. Technol., 221, 55, 2016
  23. Moller M, Nilges P, Harnisch F, Schroder U, Chemsuschem, 4, 566, 2011
  24. Plaza M, Turner C, TrAC, 71, 39, 2015
  25. Kim B, Yang J, Kim M, Lee JW, Bioresour. Technol., 303, 122898, 2020
  26. Yang J, Park J, Son J, Kim B, Lee JW, Bioresour. Technol. Rep., 2, 84, 2018
  27. Park J, Kim B, Chang YK, Lee JW, Bioresour. Technol., 230, 8, 2017
  28. Joshi H, Moser BR, Toler J, Smith WF, Walker T, Biomass Bioenerg., 35, 3262, 2011
  29. Silva JFL, Grekin R, Mariano AP, Maciel R, Energy Technol., 6, 613, 2018
  30. Im H, Lee H, Park MS, Yang JW, Lee JW, Bioresour. Technol., 152, 534, 2014
  31. Demirbas A, Energ. Explor. Exploit., 25, 63, 2007
  32. Kang SM, Fu JX, Zhang G, Renew. Sust. Energ. Rev., 94, 340, 2018
  33. Abomohra AE, Zheng X, Wang Q, Huang J, Ebaid R, Bioresour. Technol., 323, 124640, 2021
  34. Kim B, Chang YK, Lee JW, Bioprocess. Biosyst. Eng., 40, 723, 2017
  35. Ahmad E, Alam MI, Pant KK, Haider MA, Green Chem., 18, 4804, 2016
  36. Tukacs JM, Hollo AT, Retfalvi N, Csefalvay E, Dibo G, Havasi D, Mika LT, Chemistryselect, 2, 1375, 2017
  37. Son J, Kim B, Park J, Yang J, Lee JW, Bioresour. Technol., 259, 465, 2018
  38. Hu X, Lievens C, Larcher A, Li CZ, Bioresour. Technol., 102, 10104, 2011
  39. Cha JS, Um BH, Korean J. Chem. Eng., 37, 1149, 2020
  40. van Zandvoort I, Wang YH, Rasrendra CB, van Eck ERH, Bruijnincx PCA, Heeres HJ, Weckhuysen BM, Chemsuschem, 6, 1745, 2013
  41. Hoang TMC, van Eck ERH, Bula WP, Gardeniers JGE, Lefferts L, Seshan K, Green Chem., 17, 959, 2015
  42. Al-Hamamre Z, Foerster S, Hartmann F, Kröger M, Kaltschmitt M, Fuel, 96, 70, 2012
  43. Tuntiwiwattanapun N, Tongcumpou C, Ind. Crop. Prod., 117, 359, 2018
  44. Supaporn P, Yeom SH, Korean J. Chem. Eng., 34, 360, 2017
  45. Liu C, Lu X, Yu Z, Xiong J, Bai H, Zhang R, Catalysts, 10, 1006, 2020
  46. Unlu D, Ilgen O, Hilmioglu ND, Chem. Eng. J., 302, 260, 2016
  47. Yusoff MFM, Xu XB, Guo Z, JAOCS, 91, 525, 2014
  48. Kim TH, Oh YK, Lee JW, Chang YK, Algal Res., 26, 431, 2017