Issue
Korean Journal of Chemical Engineering,
Vol.39, No.8, 2156-2164, 2022
Biohydrogen production from glycerol by novel Clostridium sp. SH25 and its application to biohydrogen car operation
Biohydrogen is a clean and efficient source of energy produced easily by anaerobic systems. Therefore, the discovery of novel and efficient production methods and utilization of inexpensive starting material are crucial for economical biohydrogen production. In this study, novel hydrogen producing bacterial strain Clostridium sp. SH25 was screened from the anaerobic sludge obtained from a water treatment plant, which showed a higher hydrogen-producing activity on glycerol than other strains. The effective hydrogen production was evaluated under varying anaerobic culture conditions, and the optimum temperature, initial pH, additional NaCl concentration, and inoculum size were 37 ℃, 6.0, 0%, and 10% (v/v), respectively. The cumulative hydrogen production volume from crude glycerol was 24.30±1.07ml after 36 h. To test the practical application of biohydrogen, a 20ml culture of Clostridium sp. SH25 was incubated for 12 h and directly applied to a small hydrogen car unit operated for 19.05±0.33 s with 8.37±0.21m displacement. Overall, identification of the efficient Clostridium sp. SH25 strain resulted in the production of a large amount of biohydrogen, which further supported the operation of a small hydrogen car. This implied a possible application of biosystems in biohydrogen production.
[References]
  1. Urry J, Theory, Cult. Soc., 31, 3, 2014
  2. Andres RJ, Boden TA, Bréon FM, Ciais P, Davis S, Erickson D, Gregg JS, Jacobson A, Marland G, Miller J, Oda T, Biogeosciences, 9, 1845, 2012
  3. Lincoln SF, Ambio, 34, 621, 2016
  4. Song HS, Seo HM, Jeon JM, Moon YM, Hong JW, Hong YG, Bhatia SK, Ahn J, Lee H, Kim W, Park YC, Choi KY, Biotechnol. Bioeng., 115, 1971, 2018
  5. Sarkar N, Ghosh SK, Bannerjee S, Aikat K, Renew. Energy, 37, 19, 2012
  6. Chi J, Yu H, Chin. J. Catal., 39, 390, 2018
  7. Singh V, Yadav S, Sen R, Das D, Int. J. Hydrog. Energy, 45, 24477, 2020
  8. Das D, Veziroglu TN, Int. J. Hydrog. Energy, 33, 6046, 2008
  9. Nikolaidis P, Poullikkas A, Renew. Sust. Energ. Rev., 67, 597, 2017
  10. Bhatia SK, Jagtap SS, Bedekar AA, Bhatia RK, Rajendran K, Pugazhendhi A, Rao CV, Atabani AE, Kumar G, Yang YH, Sci. Total Environ., 765, 144429, 2021
  11. Dincer I, Acar C, Int. J. Hydrog. Energy, 40, 11094, 2014
  12. Wang J, Yin Y, Renew. Sust. Energ. Rev., 92, 284, 2018
  13. Shuba ES, Kifle D, Renew. Sust. Energ. Rev., 81, 743, 2018
  14. Sharma A, Arya SK, Biotechnol. Rep., 15, 63, 2017
  15. Khan MA, Ngo HH, Guo WS, Liu Y, Nghiem LD, Hai FI, Deng LJ, Wang J, Wu Y, Bioresour. Technol., 219, 738, 2016
  16. Sinha P, Pandey A, Int. J. Hydrog. Energy, 39, 7518, 2014
  17. Asadi N, Zilouei H, Bioresour. Technol., 227, 335, 2017
  18. Hung CH, Chang YT, Chang YJ, Bioresour. Technol., 102, 8437, 2011
  19. Taguchi F, Chang JD, Mizukami N, Saito-taki T, Hasegawa K, Morimoto M, Can. J. Microbiol., 39, 7, 1993
  20. Liu IC, Whang LM, Ren WJ, Lin PY, Int. J. Hydrog. Energy, 36, 439, 2011
  21. Chen WM, Tseng ZJ, Lee KS, Chang JS, Int. J. Hydrog. Energy, 30, 1063, 2011
  22. Silva FMS, Oliveira LB, Mahler CF, Bassin JP, Int. J. Hydrog. Energy, 42, 22720, 2017
  23. Sarma SJ, Brar SK, Bihan YL, Buelna G, Soccol CR, J. Chem. Technol. Biotechnol., 88, 2264, 2013
  24. Olabi AG, Mahmoud M, Soudan B, Wilberforce T, Ramadan M, Renew. Energy, 147, 2003, 2020
  25. Riti JS, Shu Y, Energy Sustain. Soc., 6, 2016
  26. Atadashi IM, Aroua MK, Aziz AA, Renew. Energy, 36, 437, 2011
  27. Bhatia SK, Joo HS, Yang YH, Energy Conv. Manag., 177, 640, 2018
  28. Samul D, Leja K, Grajek W, Ann. Microbiol., 64, 891, 2014
  29. Barbirato F, Himmi H, Conte T, Bories A, Ind. Crop. Prod., 7, 281, 1998
  30. Dharmadi Y, Murarka A, Gonzalez R, Biotechnol. Bioeng., 94, 821, 2006
  31. Colin T, Bories A, Lavigne C, Moulin G, Curr. Microbiol., 43, 238, 2001
  32. Petrov K, Petrova P, Appl. Microbiol. Biotechnol., 84, 659, 2009
  33. Chookaew T, Thong SO, Prasertsan P, Int. J. Hydrog. Energy, 39, 9580, 2014
  34. Choi WJ, Hartono MR, Chan WH, Yeo SS, Appl. Microbiol. Biotechnol., 89, 1255, 2011
  35. Sattayasamitsathit S, Methacanon P, Prasertsan P, Electron. J. Biotechnol., 14, 6, 2011
  36. Park YL, Bhatia SK, Gurav R, Choi TR, Kim HJ, Song HS, Park JY, Han YH, Lee SM, Park SL, Lee HS, Kim YG, Yang YH, Int. J. Biol. Macromol., 154, 929, 2020
  37. Park SL, Cho JY, Choi TR, Song HS, Bhatia SK, Gurav R, Park SH, Park K, Joo JC, Hwang SY, Yang YH, Int. J. Biol. Macromol., 177, 413, 2021
  38. Park YL, Choi TR, Han YH, Song HS, Park JY, Bhatia SK, Gurav R, Choi KY, Kim YG, Yang YH, J. Biotechnol., 322, 21, 2020
  39. Yin Y, Wang J, Int. J. Hydrog. Energy, 42, 12173, 2017
  40. Choi TR, Jeon JM, Bhatia SK, Gurav R, Han YH, Park YL, Park JY, Song HS, Park HY, Yoon JJ, Seo SO, Yang YH, Bioprocess Eng., 25, 279, 2020
  41. Jeon JM, Park H, Seo HM, Kim JH, Bhatia SK, Sathiyanarayanan G, Song HS, Park SH, Choi KY, Sang BI, Yang YH, Bioprocess. Biosyst. Eng., 38, 2147, 2015
  42. Xiao B, Liu J, J. Hazard. Mater., 168, 163, 2009
  43. Kotay SM, Das D, Bioresour. Technol., 98, 1183, 2007
  44. Fang HHP, Zhang T, Liu H, Appl. Microbiol. Biotechnol., 58, 112, 2002
  45. Colleran E, Concannon F, Golden T, Geoghegan F, Crumlish B, Killilea E, Henry M, Coates J, Water Sci. Technol., 25, 31, 1992
  46. Nelson MC, Morrison M, Yu Z, Bioresour. Technol., 102, 3730, 2011
  47. Winkler MKH, Kleerebezem R, De Bruin LMM, Verheijen PJT, Abbas B, Habermacher J, Van Loosdrecht MCM, Appl. Microbiol. Biotechnol., 97, 7447, 2013
  48. Haron R, Mat R, Abdullah TAT, Rahman RA, J. Clean Prod., 172, 314, 2018
  49. Son YS, Jeon JM, Kim DH, Yang YH, Jin YS, Cho BK, Kim SH, Kumar S, Lee BD, Yoon JJ, Int. J. Hydrog. Energy, 46, 36687, 2021
  50. Jo JH, Lee DS, Kim J, Park JM, J. Microbiol. Biotechnol., 19, 291, 2009
  51. Kim SH, Han SK, Shin HS, Process Biochem., 41, 199, 2006
  52. Wang X, Jin B, J. Biosci. Bioeng., 107, 138, 2009
  53. Sarma S, Dubey VK, Moholkar VS, Int. J. Hydrog. Energy, 41, 19972, 2016
  54. Singh V, Singh H, Das D, Int. J. Hydrog. Energy, 44, 26905, 2019
  55. Jo JH, Lee DS, Park D, Park JM, Int. J. Hydrog. Energy, 33, 5176, 2018
  56. Skonieczny MT, Yargeau V, Int. J. Hydrog. Energy, 34, 3288, 2009
  57. Khanal SK, Chen WH, Li L, Sung S, Int. J. Hydrog. Energy, 29, 1123, 2004
  58. Seifert K, Waligorska M, Wojtowski M, Laniecki M, Int. J. Hydrog. Energy, 34, 3671, 2009
  59. Ito T, Nakashimada Y, Senba K, Matsui T, Nishio N, J. Biosci. Bioeng., 100, 260, 2005
  60. Ngo TA, Kim MS, Sim SJ, Int. J. Hydrog. Energy, 36, 5836, 2011
  61. Miyake J, Ogawa Y, Tanaka T, Ahn J, Oka K, Oyaizu K, Miyatake K, Commun. Chem., 3, 138, 2020
  62. Kumar SS, Himabindu V, Mater. Sci. Energy Technol., 2, 442, 2019
  63. Prokopius K, Proton Exchange Member (PEM) Fuel Cell Engineering Model Powerplant Test Report: Initial Benchmark Tests in the Original Orientation (2011).
  64. Lo YC, Chen XJ, Huang CY, Yuan YJ, Chang JS, Int. J. Hydrog. Energy, 38, 15815, 2013
  65. Jáuregui MA, Ladino A, Malagón-Romero D, Int. J. Sustain. Eng., 11, 205, 2018