Issue
Korean Journal of Chemical Engineering,
Vol.39, No.10, 2826-2833, 2022
The detection of Fe (III) and ascorbic acid by fluorescence quenching and recovery of carbon dots prepared from coffee waste
Coffee waste-derived carbon dots (C-CDs) that emit blue light were synthesized via hydrothermal process. The synthesized C-CDs have a round shape with average diameter of ~3.7 nm. The C-CDs show PL emission centered at 450 nm with excitation wavelength at 360 nm. The C-CDs show promising applications as Fe3+ sensors in aqueous solutions by fluorescence quenching. The C-CDs exhibited strong turn-off fluorescence when trace Fe3+ was added to the solution. Furthermore, the C-CDs-Fe3+ can also be used as a turn-on sensor for the detection of ascorbic acid (AA). AA reduces Fe3+ to Fe2+, resulting in the recovery of fluorescence intensity of the quenched C-CDs. Thus, the C-CDs can be used as a rapid and effective dual mode “off-on” fluorescence sensor for Fe3+ and AA. The fluorescence response exhibits a good linear relationship with the concentration of Fe+3 and AA in the range of 0-100 and 0- 1 μM, with a limit of detection (LOD) around 4.314 and 0.162 μM, respectively.
[References]
  1. Ansi VA, Renuka NK, J. Lumines., 205, 467, 2019
  2. Moniruzzaman M, Kim J, Sens. Actuators B-Chem., 295, 12, 2019
  3. Wang Y, Herron N, J. Phys. Chem., 95, 525, 1991
  4. Li H, He X, Kang Z, Huang H, Liu Y, Liu J, Lian S, Tsang CHA, Yang X, Lee ST, Angew. Chem.-Int. Edit., 122, 4532, 2010
  5. Yadav HM, Kim JS, J. Alloy. Compd., 688, 123, 2016
  6. Fernando KAS, Sahu S, Liu Y, Lewis WK, Guliants EA, Jafariyan A, Wang P, Bunker CE, Sun YP, ACS Appl. Mater. Interfaces, 7, 8363, 2015
  7. Hoang VC, Dave K, Gomes VG, Nano Energy, 66, 104093, 2019
  8. Yadav HM, Nath NCD, Kim J, Shinde SK, Ramesh S, Hossain F, Olaniyan I, Lee JJ, Polymer, 12(8), 1666, 2020
  9. Mohapatra S, Sahu S, Sinha N, Bhutia SK, Analyst, 140, 1221, 2015
  10. Luo PG, Sahu S, Yang ST, Sonkar SK, Wang J, Wang H, Lecroy GE, Cao L, Sun YP, J. Mater. Chem. B, 1, 2116, 2013
  11. Boobalan T, Sethupathi M, Sengottuvelan N, Kumar P, Balaji P, Gulyás B, Padmanabhan P, Selvan ST, Arun A, ACS Appl. Nano Mater., 3(6), 5910, 2020
  12. Yao C, Xu Y, Xia Z, J. Mater. Chem. C, 6, 4396, 2018
  13. Tetsuka H, Asahi R, Nagoya A, Okamoto K, Tajima I, Ohta R, Okamoto A, Adv. Mater., 24, 5333, 2012
  14. Chen M, Wang W, Wu X, J. Mater. Chem. B, 2, 3937, 2014
  15. Sarswat PK, Free ML, Phys. Chem. Chem. Phys., 17, 27642, 2015
  16. Zhu S, Zhang J, Tang S, Qiao C, Wang L, Wang H, Liu X, Li B, Li Y, Yu W, Wang X, Sun H, Yang B, Adv. Funct. Mater., 22, 4732, 2012
  17. Dong Y, Wang R, Li H, Shao J, Chi Y, Lin X, Chen G, Carbon, 50, 2810, 2012
  18. Pillar-Little TJ, Wanninayake N, Nease L, Heidary DK, Glazer EC, Kim DY, Carbon, 140, 616, 2018
  19. Qi H, Teng M, Liu S, Li J, Yu H, Teng C, Huang Z, Liu H, Shao Q, Umar A, Ding T, Gao Q, Guo Z, J. Colloid Interface Sci., 539, 332, 2019
  20. Boruah A, Saikia M, Das T, Goswamee RL, Saikia BK, J. Photochem. Photobiol. B-Biol., 209, 111940, 2020
  21. Ahmadian-Fard-Fini S, Salavati-Niasari M, Ghanbari D, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 203, 481, 2018
  22. Kim Y, Jang G, Lee TS, ACS Appl. Mater. Interfaces, 7, 15649, 2015
  23. Li J, Xu O, Zhu X, RSC Adv., 11, 34107, 2021
  24. Ananthanarayanan A, Wang X, Routh P, Sana B, Lim S, Kim DH, Lim KH, Li J, Chen P, Adv. Funct. Mater., 24, 3021, 2014
  25. Sangubotla R, Kim J, Appl. Surf. Sci., 490, 61, 2019
  26. Ankireddy SR, Vo VG, An SSA, Kim J, ACS Appl. Bio Mater., 3, 4873, 2020
  27. Arumugam N, Kim J, Mater. Lett., 219, 37, 2018
  28. Venkateswarlu S, Govindaraju S, Sangubotla R, Kim J, Lee MH, Yun K, J. Nanomater., 9, 245, 2019
  29. Sangubotla R, Kim J, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 122, 111916, 2021
  30. Tam VWY, Tam CM, Resour. Conserv. Recycl., 47, 209, 2006
  31. Saberian M, Li J, Donnoli A, Bonderenko E, Oliva P, Gill B, Lockrey S, Siddique R, J. Clean Prod., 289, 125837, 2021
  32. Morikawa CK, Saigusa M, Plant Soil, 304, 249, 2008
  33. Pujol D, Liu C, Gominho J, Olivella MA, Fiol N, Villaescusa I, Pereira H, Ind. Crop. Prod., 50, 423, 2013
  34. Shi B, Su Y, Zhang L, Huang M, Liu R, Zhao S, ACS Appl. Mater. Interfaces, 8, 10717, 2016
  35. Badawy SM, Liem RI, Rigsby CK, Labotka RJ, DeFreitas RA, Thompson AA, Br. J. Haematol., 175, 705, 2016
  36. Le TH, Lee HJ, Kim JH, Park SJ, Sensors, 20(12), 3470, 2020
  37. Guo R, Zhou S, Li Y, Li X, Fan L, Voelcker NH, ACS Appl. Mater. Interfaces, 7, 23958, 2015
  38. Keeley GP, O’Neill A, McEvoy N, Peltekis N, Coleman JN, Duesberg GS, J. Mater. Chem., 20, 7864, 2010
  39. Wang X, Wu P, Hou X, Lv Y, Analyst, 138, 229, 2013
  40. Sood SP, Sartori LE, Wittmer DP, Haney WG, Anal. Chem., 48, 796, 1976
  41. Nag A, Hazarika A, Shanavas KV, Sharma SM, Dasgupta I, Sarma DD, J. Phys. Chem. Lett., 2, 706, 2011
  42. Trinh QH, Hossain MM, Kim SH, Mok YS, Heliyon, 4, e00522, 2018
  43. Lin YS, Chen CL, J. Appl. Polym. Sci., 110, 2704, 2008
  44. Robberecht H, Van Dyck K, Bosscher D, Van Cauwenbergh R, Int. J. Food Prop., 11, 638, 2008
  45. Sivaranjini B, Mangaiyarkarasi R, Ganesh V, Umadevi S, Sci. Rep., 8, 1, 2018
  46. Kim C, Lee J, Wang W, Fortner J, J. Nanomater., 10(6), 1228, 2020
  47. Morais A, Alves JPC, Lima FAS, Lira-Cantu M, Nogueira AF, J. Photonics Energy, 5, 057408, 2015
  48. Matsoso BJ, Ranganathan K, Mutuma BK, Lerotholi T, Jones G, Coville NJ, New J. Chem., 41, 9497, 2017
  49. Djara R, Holade Y, Merzouki A, Lacour MA, Masquelez N, Flaud V, Cot D, Rebiere B, van der Lee A, Cambedouzou J, Front. Chem., 8, 385, 2020
  50. Christodoulou C, Wolter B, Ioakeimidis A, Chouliaras G, Wiesner S, Lauermann I, Centeno A, Zurutuza A, Fostiropoulos K, Thin Solid Films, 682, 57, 2019
  51. Omer KM, Anal. Bioanal. Chem., 410, 6331, 2018
  52. Xing Z, Ju Z, Zhao Y, Wan J, Zhu Y, Qiang Y, Qian Y, Sci. Rep., 6, 1, 2016
  53. Fang D, He F, Xie J, Xue L, J. Wuhan Univ. Technol. Mater. Sci. Ed., 35, 711, 2020
  54. Akyuz S, Akyuz T, Celik O, Atak C, J. Mol. Struct., 1044, 67, 2013
  55. Premaratne G, Farias S, Krishnan S, Anal. Chim. Acta, 970, 23, 2017
  56. Sean S, Binh QA, Tungtakanpoung D, Kajityichyanukul P, IOP Conf. Ser. Mater. Sci. Eng., 617, 012012, 2019
  57. Ashby SP, Thomas JA, García-Cañadas J, Min G, Corps J, Powell AV, Xu H, Shen W, Chao Y, Faraday Discuss., 176, 349, 2014
  58. Chen Q, Zhou K, Chen Y, Wang A, Liu F, RSC Adv., 7(21), 12812, 2017
  59. Senkevich JJ, Mitchell CJ, Yang GR, Lu TM, Langmuir, 18, 1587, 2002
  60. Zhang L, Tu LY, Liang Y, Chen Q, Li ZS, Li CH, Wang ZH, Li W, RSC Adv., 8(74), 42280, 2018
  61. Šarić A, Musić S, Nomura K, Popović S, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 56, 43, 1998
  62. Puvvada N, Kumar BNP, Konar S, Kalita H, Mandal M, Pathak A, Sci. Technol. Adv. Mater., 13, 045008, 2012
  63. Shaikh AF, Tamboli MS, Patil RH, Bhan A, Ambekar JD, Kale BB, J. Nanosci. Nanotechnol., 19, 2339, 2019
  64. Zhang J, Shen W, Pan D, Zhang Z, Fang Y, Wu M, New J. Chem., 34, 591, 2010
  65. Raveendran V, Babu ARS, Renuka NK, RSC Adv., 9(21), 12070, 2019
  66. Ankireddy SR, Kim J, Sens. Actuators B-Chem., 255, 3425, 2018
  67. Kim Y, Kim J, Opt. Mater., 99, 109514, 2020
  68. Wahba MEK, El-Enany N, Belal F, Anal. Methods, 7, 10445, 2015
  69. Wang GL, Dong YM, Li ZJ, Nanotechnology, 22, 085503, 2011
  70. Gao X, Zhou X, Ma Y, Qian T, Wang C, Chu F, Appl. Surf. Sci., 469, 911, 2019
  71. Luo X, Zhang W, Han Y, Chen X, Zhu L, Tang W, Wang J, Yue T, Li Z, Food Chem., 258, 214, 2018
  72. Ma X, Lin S, Dang Y, Dai Y, Zhang X, Xia F, Anal. Bioanal. Chem., 411, 6645, 2019
  73. Zhao P, He K, Han Y, Zhang Z, Yu M, Wang H, Huang Y, Nie Z, Yao S, Anal. Chem., 87, 9998, 2015
  74. Hu G, Ge L, Li Y, Mukhtar M, Shen B, Yang D, Li J, J. Colloid Interface Sci., 579, 96, 2020