Issue
Korean Journal of Chemical Engineering,
Vol.39, No.8, 2055-2068, 2022
The effects of under-ribs convection on enhanced drainage parallel flow field for proton exchange membrane fuel cell
A new enhanced drainage parallel (EDP) flow field was designed that not only enhances under-rib convection but also enables a more uniform distribution of hydrogen and oxygen. Through the optimization of the model, we established the influence of the flow field size, relative humidity, and stoichiometric ratio on cell performance. When the rib width is reduced, the maximum power density is improved. Compared with the parallel flow field and serpentine flow field, the maximum power density of the EDP flow field was increased by 69.4% and 7.9%, respectively. Under optimal conditions, the net power of the EDP flow field can reach 0.56 W/cm2. In the single-cell test, the maximum power density of the EDP flow field can reach 1.19 W/cm2. This implies that the EDP flow field has potential application of proton exchange membrane fuel cells.
[References]
  1. Yi P, Zhang D, Qiu D, Peng L, Lai X, Int. J. Hydrog. Energy, 44, 6813, 2019
  2. Zhu W, Fang JA, Zhang W, Xu Y, Tong L, Arabian J. Sci. Eng., 39, 2869, 2014
  3. Kahraman H, Cevik I, Dündar F, Ficic F, Arabian J. Sci. Eng., 41, 1961, 2016
  4. Idibie CA, Abdulkareem SA, Pienaar C, Iyuke SE, Vandyk L, Ind. Eng. Chem. Res., 49, 1600, 2010
  5. Amadane Y, Mounir H, Marjani AE, Bouhrim H, Rafi MA, Arabian J. Sci. Eng., 45(9), 7587, 2020
  6. Abdulla S, Patnaikuni VS, Int. J. Hydrog. Energy, 45, 25970, 2020
  7. Pefeer MF, Cora ON, Kog M, Int. J. Hydrog. Energy, 36, 15427, 2011
  8. Randrianarizafy B, Schott P, Chandesris M, Gerard M, Bultel Y, Int. J. Hydrog. Energy, 43, 8907, 2018
  9. El-Dosoky M, Ahmed M, Ashgriz N, Int. J. Energy Res., 42, 1664, 2018
  10. Khazaee I, Ghazikhani M, Arabian J. Sci. Eng., 38, 2521, 2013
  11. Lim BH, Majlan EH, Daud WRW, Husaini T, Rosli MI, Ionics, 22, 1, 2016
  12. Khazaee I, Ghazikhani M, Arabian J. Sci. Eng., 38, 1551, 2013
  13. Gerteisen D, Heilmann T, Ziegler C, J. Power Sources, 187, 165, 2009
  14. Xuan L, Hang G, Fang Y, Chong FM, Electrochim. Acta, 52, 3607, 2007
  15. Prasad K, Jayanti S, J. Power Sources, 180, 227, 2008
  16. Arvay A, French J, Wang JC, Peng XH, Kannan AM, Int. J. Hydrog. Energy, 38, 3717, 2013
  17. Khazaee I, Ghazikhani M, Arabian J. Sci. Eng., 37, 2297, 2012
  18. Dong J, Liu S, Liu S, J. Renew. Sustain. Energy, 12, 044303, 2020
  19. Kahraman H, Coban A, Arabian J. Sci. Eng., 45, 5143, 2020
  20. Yan X, Guan C, Zhang Y, Jiang K, Wei G, Cheng X, Shen S, Zhang J, Appl. Therm. Eng., 147, 1107, 2019
  21. Yoshida T, Kojima K, Electrochem. Soc. Interface, 24, 45, 2015
  22. Heidary H, Kermani MJ, Dabir B, Energy Conv. Manag., 124, 51, 2016
  23. Perng SW, Wu HW, Appl. Energy, 143, 81, 2015
  24. Velisala V, Pullagura G, Yarramsetty N, Vadapalli S, Gorantla KK, Arabian J. Sci. Eng., 46(12), 11687, 2021
  25. Liu HC, Yang WM, Cheng LS, Tan J, Fuel Cells, 18, 173, 2017
  26. Shi Z, Xia W, J. Power Sources, 185, 985, 2008
  27. Hang G, Yue PC, Yan QX, Fang Y, Chong FM, Int. J. Hydrog. Energy, 38, 11028, 2013
  28. Abdulla S, Seepana MM, Patnaikuni VS, Arabian J. Sci. Eng., 45, 7691, 2020
  29. Tiss F, Chouikh R, Guizani A, Energy Conv. Manag., 80, 32, 2014
  30. Baz FB, Ookawara S, Ahmed M, Int. J. Hydrog. Energy, 44, 30644, 2018
  31. Shimpalee S, Zee J, Int. J. Hydrog. Energy, 32, 842, 2007
  32. Chowdhury MZ, Genc O, Toros S, Int. J. Hydrog. Energy, 43, 10798, 2018
  33. Velisala V, Srinivasulu GN, Arabian J. Sci. Eng., 43, 1225, 2018
  34. Abdulla S, Patnaikuni VS, Int. J. Energy Res., 43, 2806, 2019
  35. Barbir F, Boston A, London H, York N, Tokyo S, Elsevier Academic Press (2005).
  36. Li W, Zhang Q, Wang C, Yan X, Shen S, Xia G, Zhu F, Zhang J, Appl. Energy, 195, 278, 2017
  37. Celik E, Karagoz I, J. Power Energy, 234, 1189, 2020
  38. Liu R, Zhou W, Li S, Li F, Ling W, Int. J. Hydrog. Energy, 45, 17833, 2020
  39. Liang H, Ming HA, Yga B, Dfa B, Pwa B, Bo L, Zs A, Energy Conv. Manag., 205, 112335, 2020