Issue
Korean Journal of Chemical Engineering,
Vol.39, No.8, 2044-2054, 2022
Experimental studies of bubble cutting in a lab-scale micro-structured bubble column with different liquid viscosity
Bubble cutting was realized by installing a wire mesh in a micro-structured bubble column (MSBC) and studied experimentally with liquid viscosity range from 1 to 39.6mPa·s. A non-intrusive high-speed camera method was used to determine bubble size and size distribution. The changes of gas holdup, bubble size, size distribution and Sauter mean diameter before and after cutting were systematically studied with mesh openings of 3.8mm and 5.5mm. Three novel bubble cutting behaviors with uniform cutting, detachment cutting and indirect cutting behavior were observed. In the presence of two wire meshes, the bubble size distribution roughly shows a Gaussian curve distribution and the peak tends to shift towards lower diameters. With increasing liquid viscosity and superficial gas velocity, the dominant peak tends to move towards higher diameters, resulting in poor mesh cutting effect. After cutting, in the case of two wire meshes, the Sauter mean diameter decreased by 33.5% and 22.2% and the gas holdup increased by 3.2-12.2% and 1.2-4.4%, respectively. For the case of 3.8 mm mesh opening, the interfacial area increased by 10-26%, which is much better than 5.5mm mesh. The mean bubble size above the mesh will grow again and its growth rate depends on the liquid viscosity.
[References]
  1. Im H, Park J, Lee JW, Korean J. Chem. Eng., 36, 1680, 2019
  2. Liu JD, Zhou P, Liu L, Chen S, Song YP, Yan HJ, Chem. Eng. Sci., 230, 116218, 2021
  3. Zhao L, Lv M, Tang Z, Tang T, Shan Y, Pan Z, Sun Y, Chem. Eng. J., 354, 304, 2018
  4. Shah YT, Kelkar BG, Godbole SP, Deckwer WD, AIChE J., 28, 353, 1982
  5. Fadili A, Essadki AH, Korean J. Chem. Eng., 38, 924, 2021
  6. Kipping R, Kyk H, Hampel U, Chem. Eng. Sci., 229, 116056, 2021
  7. Hissanaga AM, Padoin N, Paladino EE, Chem. Eng. Sci., 218, 115531, 2019
  8. Leonard C, Ferrasse JH, Boutin O, Lefevre S, Chem. Eng. Res. Des., 100, 391, 2015
  9. Rollbusch P, Bothe M, Becker M, Ludwig M, Grünewald M, Schlüter M, Franke R, Chem. Eng. Sci., 126, 660, 2015
  10. Liang XF, Pan H, Su Y, Luo ZH, Chem. Eng. Res. Des., 112, 88, 2016
  11. Jain D, Lau YM, Kuipers JAM, Deen NG, Chem. Eng. Sci., 100, 496, 2013
  12. Deshpande SS, Kar K, Pressler J, Tebeka I, Martins B, Rosenfeld D, Biggs J, Chem. Eng. Sci., 205, 350, 2019
  13. Kracht W, Vallebuona G, Casali A, Miner. Eng., 18, 1067, 2005
  14. Chen JQ, Brooks CS, Chem. Eng. Sci., 234, 116435, 2021
  15. Li LR, Kang YT, J. CO2 Util., 39, 101170, 2020
  16. Youssef AA, Al-Dahhan MH, Dudukovic MP, Int. J. Chem. Reactor. Eng., 11, 169, 2013
  17. Guan XP, Xu QS, Yang N, Nigam KDP, Chem. Eng. Sci., 240, 116674, 2021
  18. Xu X, Wang JJ, Yang Q, Wang L, Lu H, Liu HL, Wang HL, Chin. J. Chem. Eng., 28, 2968, 2020
  19. Chen GH, Zhu HT, Guo XL, Wang WW, Li JL, CIESC J., 68, 4633, 2017
  20. Lavasani MS, Rahimi R, Zivdar M, Chem. Eng. Process., 129, 162, 2018
  21. Mortaheb HR, Kosuge H, Asano K, Chem. Eng. J., 88, 59, 2002
  22. Zhao H, Li L, Jin J, Li Q, Chem. Eng. Res. Des., 129, 55, 2018
  23. Jain D, Kuipes JAM, Deen NG, Chem. Eng. Sci., 137, 685, 2015
  24. Opletal M, Novotný P, Linek V, Moucha T, Kordač M, Chem. Eng. J., 353, 436, 2018
  25. Ide M, Uchiyama H, Ishikura T, Chem. Eng. Sci., 56, 6225, 2001
  26. Wang WW, Li SY, Li JL, Ind. Eng. Chem. Res., 51, 7067, 2012
  27. Li X, Wang WW, Zhang P, Li JL, Chen GH, Roy Soc Open Sci., 6, 190136, 2019
  28. Chen GH, Zhu HT, Guo XL, Wang WW, Li JL, CIESC J., 68, 4633, 2017
  29. Zhang X, Guo K, Qi W, Zhang T, Can. J. Chem. Eng., 95, 1202, 2016
  30. Baltussen MW, Segers QIE, Kuipes JAM, Deen NG, Chem. Eng. Sci., 157, 138, 2017
  31. Baltussen MW, Kuipers JAM, Deen NG, Chem. Eng. Sci., 165, 25, 2017
  32. Sujatha KT, Meeusen BGJ, Kuipes JAM, Deen NG, Chem. Eng. Sci., 130, 18, 2015
  33. Zhang W, Wang JF, Li B, Yu K, Wang DB, Yongphet P, Xu HJ, Yao J, Chem. Eng. J., 417, 127982, 2021
  34. Kováts P, Thévenin D, Zähringer K, Int. J. Multiph. Flow, 123, 103174, 2020
  35. Sujatha KT, Jain D, Kamath S, Kuipes JAM, Deen NG, Chem. Eng. Sci., 169, 225, 2017
  36. Xing C, Wang TF, Wang JF, Chem. Eng. Sci., 95, 313, 2013
  37. Barati-Harooni A, Jamialahmadi M, Int. J. Multiph. Flow, 139, 103674, 2021
  38. Muilwijk C, Van den Akker HEA, Int. J. Multiph. Flow, 137, 103498, 2021
  39. Zhang HH, Guo KY, Wang YL, Sayyar A, Wang TF, Int. J. Heat Mass Transf., 161, 120229, 2020
  40. Hu SW, Liu XH, Chem. Eng. J., 413, 127503, 2021
  41. Xu GZ, Sun ZN, Zhang XT, Ann. Nucl. Energy, 151, 107905, 2021
  42. Xu X, Zhou H, Jing S, Lan WJ, Li SW, Chem. Eng. Sci., 201, 349, 2019
  43. Ostadrahimi M, Farrokhpay S, Gharibi K, Dehghani A, Colloids Surf. A: Physicochem. Eng. Asp., 594, 124672, 2020
  44. Zhou XH, Ma YL, Liu MY, Zhang Y, Powder Technol., 362, 57, 2020
  45. Grund G, Schumpe A, Deckwer WD, Chem. Eng. Sci., 47, 3509, 1992
  46. Guan XP, Yang N, Chem. Eng. Sci., 243, 116758, 2021
  47. Wilkinson PM, Haringa H, Dierendonck LLV, Chem. Eng. Sci., 49, 1417, 1994
  48. Kojima H, Sawai J, Suzuki H, Chem. Eng. Sci., 52, 4111, 1997