Issue
Korean Journal of Chemical Engineering,
Vol.39, No.12, 3334-3342, 2022
Visible light photocatalytic activity of TiO2 with carbon-fluorine heteroatoms simultaneously introduced by CF4 plasma
CF4 plasma treatment is performed on commercial TiO2 to improve the photocatalytic efficiency. The CF4 plasma treatment is a facile and fast method for simultaneous introduction of carbon and fluorine atoms onto TiO2. Photodegradation of rhodamine B, methyl orange, and methylene blue is carried out under solar light irradiation to determine its CF4 plasma treatment effect. The dye removal of commercial TiO2 to rhodamine B, methyl orange, and methylene blue is 60.0, 18.9, and 49.2%, respectively, whereas TiO2 treated with CF4 plasma for 50 min is 93.5, 71.0, and 88.6% for rhodamine B, methyl orange, and methylene blue, respectively. In addition, the photodegradation rate constants of TiO2 treated with CF4 plasma for 50 min were 0.0135, 0.0083, and 0.0129min-1 for rhodamine B, methyl orange, and methylene blue, respectively, which are up to 7.5 times higher than that of untreated TiO2 (0.0049, 0.0011, and 0.0039min-1). This improvement is attributed to the increase in oxygen vacancies by the introduction of carbon atoms into TiO2 using CF4 plasma treatment. In addition, the F- ions physically adsorbed to the TiO2 surface promote the formation of hydroxyl free radicals, enabling effective decomposition of various dyes.
[References]
  1. Chen D, Cheng Y, Zhou N, Chen P, Wang Y, Li K, Huo S, Cheng P, Peng P, Zhang R, J. Clean Prod., 268, 121725, 2020
  2. MiarAlipour S, Friedmann D, Scott J, Amal R, J. Hazard. Mater., 341, 404, 2018
  3. An HR, Park SY, Huh JY, Kim H, Lee YC, Lee YB, Hong YC, Lee HU, Appl. Catal. B: Environ., 211, 126, 2017
  4. Ling Y, Li J, Wu J, Liu H, Mao X, Qi Y, Ma Q, Liu Q, Qiao Z, Chu W, J. Chem. Eng., 39, 343, 2022
  5. Kazeem TS, Zubair M, Daud M, Mu’azu ND, Al-Harthi MA, J. Chem. Eng., 36, 1057, 2019
  6. Hossienzadeh K, Maleki A, Daraei H, Safari M, Pawar R, Lee SM, J. Chem. Eng., 36, 1360, 2019
  7. Sridhar A, Ponnuchamy M, Kapoor A, Prabhakar S, J. Hazard. Mater., 424, 127432, 2022
  8. Kang DH, Jo H, Jung MJ, Kim KH, Lee YS, Carbon Lett., 27, 64, 2018
  9. Lee JS, You KH, Park CB, Adv. Mater., 24, 1084, 2012
  10. Baruah M, Ezung SL, Supong A, Bhomick PC, Kumar S, Sinha D, J. Chem. Eng., 38, 1277, 2021
  11. Zafar M, Yun JY, Kim DH, J. Chem. Eng., 35, 567, 2018
  12. Jung JY, Kim JH, Lee YS, J. Nanosci. Nanotechnol., 16, 4498, 2016
  13. Jung MJ, Kim Y, Lee YS, J. Ind. Eng. Chem., 47, 187, 2017
  14. Kim JH, Nishimura F, Yonezawa S, Takashima M, J. Fluor. Chem., 144, 165, 2012
  15. Teng F, Zhang G, Wang Y, Gao C, Chen L, Zhang P, Zhang Z, Xie E, Appl. Surf. Sci., 320, 703, 2014
  16. Cui GW, Wang WI, Ma MY, Zhang M, Xia XY, Han FY, Shi XF, Zhao YQ, Dong YB, Tang B, Chem. Commun., 49, 6415, 2013
  17. Lin YT, Weng CH, Lin YH, Shiesh CC, Chen FY, Sep. Purif. Technol., 116, 114, 2013
  18. Huang DG, Liao SJ, Liu JM, Dang Z, Petrik L, J. Photochem. Photobiol. A-Chem., 184, 282, 2006
  19. Lee R, Lim C, Kim MJ, Lee YS, Appl. Chem. Eng., 32, 55, 2021
  20. Song EJ, Kim MJ, Han JI, Choi YJ, Lee YS, Appl. Chem. Eng., 30, 160, 2019
  21. Park Y, Kim W, Monllor-Satoca DN, Tachikawa T, Majima T, Choi W, J. Phys. Chem. Lett., 4, 189, 2013
  22. Pellegrino F, Pellutiè L, Sordello F, Minero C, Ortel E, Hodoroaba VD, Maurino V, Appl. Catal. B: Environ., 216, 80, 2017
  23. He Y, Yan Q, Liu X, Dong M, Yang J, J. Photochem. Photobiol. A-Chem., 393, 112400, 2020
  24. Lee MH, Kim HY, Kim J, Han JT, Lee YS, Woo JS, Carbon Lett., 30, 345, 2020
  25. Lee DH, Swain B, Shin D, Ahn NK, Park JR, Park KS, Mater. Res. Bull., 109, 227, 2019
  26. Bharti B, Kumar S, Lee HN, Kumar R, Sci. Rep., 6, 1, 2016
  27. Mahdi N, Kumar P, Goswami A, Perdicakis B, Shankar K, Sadrzadeh M, Nanomaterials, 9, 1186, 2019
  28. Kaur S, Singh V, J. Hazard. Mater., 141, 230, 2007
  29. Zhang Y, Chen Z, Lu Z, Nanomaterials, 8, 261, 2018
  30. Gordon TR, Cargnello M, Paik T, Mangolini F, Weber RT, Fornasiero P, Murray CB, J. Am. Chem. Soc., 134, 6751, 2012
  31. Li J, Zhang M, Guan Z, Li Q, He C, Yang J, Appl. Catal. B: Environ., 206, 300, 2017
  32. He Y, Yan Q, Liu X, Dong M, Yang J, J. Photochem. Photobiol. A-Chem., 393, 112400, 2020
  33. Kim HY, Ju YW, J. Chem. Eng., 38, 1522, 2021
  34. Bharti B, Li H, Liu D, Kumar H, Manikandan V, Zha X, Ouyang F, Appl. Phys. A-Mater. Sci. Process., 126, 1, 2020
  35. Sang Y, Liu H, Umar A, Chem. Pub. Soc. Europe., 7, 559, 2015
  36. Yang SY, Chen YY, Zheng JG, Cui YJ, J. Environ. Sci., 19, 86, 2007
  37. Yao N, Huang J, Fu K, Deng X, Ding M, Zhang S, Xu X, Li L, Sci. Rep., 6, 31123, 2016
  38. Chen Y, Wang Y, Li W, Yang Q, Hou Q, Wei L, Liu L, Huang F, Ju M, Appl. Catal. B: Environ., 210, 352, 2017
  39. Lee HU, Lee YC, Lee SC, Park SY, Son B, Lee JW, Lim CH, Choi CJ, Choi MH, Lee SY, Chem. Eng. J., 254, 268, 2014
  40. Minero C, Mariella G, Maurino V, Pelizzetti E, Langmuir, 16, 2632, 2000
  41. Lv K, Cheng B, Yu J, Liu G, Phys. Chem. Chem. Phys., 14, 5349, 2012
  42. Liu J, Xie F, Li R, Li T, Jia Z, Wang Y, Wang Y, Zhang X, Fan C, Mater. Sci. Semicond. Process, 97, 1, 2019
  43. Liu Q, Wang F, Lin H, Xie Y, Tong N, Lin J, Zhang X, Zhang Z, Wang X, Catal. Sci. Technol., 8, 4399, 2018
  44. Zhang Y, Chen Z, Lu Z, Nanomaterials, 8, 261, 2018
  45. Lettmann C, Hildenbrand K, Kisch H, Macyk W, Maier WF, Appl. Catal. B: Environ., 32, 215, 2001
  46. Bai BC, Im JS, Kim JG, Lee YS, Appl. Chem. Eng., 21, 29, 2010
  47. Jeon HW, Jeong MG, An BY, Hong MS, Seong SH, Lee GD, Clean Technol., 26, 311, 2020
  48. Zhang D, Li J, Wang Q, Wu Q, J. Mater. Chem. A, 1, 8622, 2013
  49. Huang F, Chen L, Wang H, Feng T, Yan Z, J. Electrost., 70, 43, 2012
  50. Li C, Sun Z, Ma R, Xue Y, Zheng S, Microporous Mesoporous Mater., 243, 281, 2017
  51. Tian J, Wang J, Dai J, Wang X, Yin Y, Surf. Coat. Technol., 204, 723, 2009
  52. Amran SNBS, Wongso V, Halim NSA, Husni MK, Sambudi NS, Wirzal MDH, J. Asian Ceram. Soc., 7, 321, 2019
  53. Huang DG, Liao SJ, Liu JM, Dang Z, Petrik L, J. Photochem. Photobiol. A-Chem., 184, 282, 2006