Issue
Korean Journal of Chemical Engineering,
Vol.39, No.9, 2513-2522, 2022
Application of amine-loaded activated carbon fiber in CO2 capture and separation
The CO2 emitted by coal-fired power plants is the main factor leading to global warming, and the capture of CO2 in the flue gas of power plants is still the main task at this stage. Many adsorbents have been developed to capture CO2 in high-temperature flue gas, but some materials are complicated to synthesize or the cost is too high. Here, we used low-cost raw materials activated carbon fiber and PEI, and used green synthesis to synthesize new adsorbents in order to capture CO2 in high-temperature flue gas of a power plant. To improve the performance of highly porous activated carbon fiber (ACF) in CO2 capture and separation, an organic polymer polyethylenimine (PEI) was loaded successfully into the oxidized ACF. The modified adsorbent was tested by FT-IR, XRD and SEM, and the CO2 adsorption capacity and CO2/N2 selectivity were analyzed. The results showed that the as-synthesized PEI-modified adsorbent has a CO2 adsorption capacity of 2.5mmol/g, which is 1.7 times better than that of the pristine ACF adsorbent (1.5mmol/g), at 1 bar and 333 K, and it has excellent CO2/N2 selectivity, as calculated by ideal adsorption solution theory (IAST). These data indicate that PEI was loaded successfully into the oxidized ACF. In addition, the dual site Langmuir isotherm equation and Langmuir isotherm equation can be in good agreement with the adsorption curves of CO2 and N2. In comparison with other composite adsorbents, the preparation process of the present new adsorbent is highly environmentally friendly, the synthesis method is simple and the cost is low, which demonstrates potential applications in the separation of CO2 from the flue gas of power plants.
[References]
  1. Halmann MM, Steinberg M, Greenhouse gas carbon dioxide mitigation: Science and technology [M], Boca Raton, Florida: Lewis Publishers (1999).
  2. Monnin E, Indermuhle A, Dallenbach A, Fluckiger J, Stauffer B, Stocker TF, Raynaud D, Barnola JM, Science, 291, 112, 2001
  3. Li Z, Chen S, Hopkinson D, Luebke D, Int. J. Greenh. Gas Con., 44, 59, 2016
  4. Mondal MK, Balsora HK, Varshney P, Energy, 46, 431, 2012
  5. Favre E, Chem. Eng. J., 171, 782, 2011
  6. IPCC, Carbon dioxide capture and storage [M], Cambridge: United Kingdom (2005).
  7. Kim YE, Park JH, Yun SH, Nam SC, Jeong SK, Yoon YI, J. Ind. Eng. Chem., 20(4), 1486, 2014
  8. Zhou J, Ho WS, J. Membr. Sci., 286, 310, 2006
  9. Choi S, Drese JH, Jones CW, ChemSusChem., 2, 796, 2009
  10. Goyal N, Bulasara VK, Barman S, J. Hazard. Mater., 344, 417, 2018
  11. Goyal N, Barman S, Bulasara VK, Microporous Mesoporous Mater., 259, 184, 2018
  12. Pandolfo AG, Amini-amoli M, Killingley JS, Carbon, 32(5), 1015, 1994
  13. Serbezov A, J. Chem. Eng. Data, 48, 412, 2003
  14. Chen B, Eddaoudi M, Hyde ST, Science, 291, 1021, 2001
  15. Nathaniel LR, Juergen E, Mohamed E, Science, 300, 1127, 2003
  16. Chael HK, Siberio-Perez DY, Kim J, Nature, 427, 523, 2004
  17. Xu YL, Wang R, Wang JY, Li JH, Jiao TF, Liu ZF, Chem. Eng. J., 417, 129233, 2021
  18. Rada ZH, Abid HR, Sun H, Shang J, Li J, He Y, Liu S, Wang S, Pro. Nat. Sci. Mater. Int., 28, 160, 2018
  19. Ryu SK, High Temp. High Pressure, 22, 345, 1990
  20. Quinn DF, Macdonald JA, Carbon, 30, 1097, 1992
  21. Guo R, Jiao TF, Li RF, Chen Y, Guo WC, Zhang LX, Zhou JX, Zhang QR, Peng QM, ACS Sustainable Chem. Eng., 6, 1279, 2018
  22. Xing RR, Wang W, Jiao TF, Ma K, Zhang OR, Hong W, Qiu H, Zhou JX, Zhang LX, Peng QM, ACS Sustainable Chem. Eng., 5, 4948, 2017
  23. Guo X, Huang H, Liu D, Zhong C, Chem. Eng. Sci., 189, 277, 2018
  24. Huang A, Feng B, Int. J. Hydrog. Energy, 43, 2224, 2018
  25. Peredo-Mancilla D, Ghimbeuc CM, Ho BN, Jeguirim M, Hort C, Bessieres D, J. Environ. Chem. Eng., 7, 103, 2019
  26. Li XG, Wei F, Huang MR, Xie YB, J. Phys. Chem. B, 111, 5829, 2007
  27. Raganati F, Alfe M, Gargiulo V, Chirone R, Ammendol P, Chem. Eng. Res. Des., 134, 540, 2018
  28. Awadallah-F A, Hillman F, Al-Muhtaseb SA, Jeong HK, Ind. Eng. Chem. Res., 58(16), 6653, 2019
  29. Tang X, Ripepi N, Kim YH, Stadie NP, Yu LJ, Hall MR, Fuel, 185, 10, 2016
  30. Park Y, Moon DK, Kim YH, Ahn H, Lee CH, Adsorption, 20(4), 631, 2014
  31. Yang L, Jing L, Lin YS, Ming C, J. Phys. Chem. C, 118(13), 6744, 2015
  32. Gercel O, Ozcan A, Ozcan AS, Gercel HF, Appl. Surf. Sci., 253, 4843, 2007
  33. Kong JJ, Yue QY, Huang LH, Gao Y, Sun YY, Gao BY, Li Q, Wang Y, Chem. Eng. J., 221, 62, 2013
  34. Abbasi A, Nasef MM, Kheawhom S, Faridi-Majidic R, Takeshid M, Abouzari-Lotfe E, Choong T, Radiat. Phys. Chem., 156, 58, 2019
  35. Sujan AR, Pang SH, Zhu G, Jones CW, Lively RP, ACS Sustain. Chem. Eng., 7, 5264, 2019
  36. Chen ZH, Deng SB, Wei HR, Wang B, Huang J, Yu G, ACS Appl. Mater. Interfaces, 5, 6937, 2013
  37. Wang J, Huang H, Wang M, Yao L, Qiao W, Long D, Ling L, Ind. Eng. Chem. Res., 54, 5319, 2015
  38. Chen C, Kim SS, Cho WS, Ahn WS, Appl. Surf. Sci., 332, 167, 2015
  39. Zhou LH, Xu J, Gao F, Liu XW, Hu J, Microporous Mesoporous Mater., 222, 113, 2016
  40. Mukherjee S, Amar A, Samanta N, Adv. Powder Technol., 30, 3231, 2019
  41. Ouyang J, Gu W, Zheng C, Yang H, Zhang X, Jin Y, Chen J, Jiang J, Appl. Clay Sci., 152, 267, 2018
  42. Niu M, Yang H, Zhang X, Wang Y, Tang A, ACS Appl. Mater. Interfaces, 8, 17312, 2016
  43. Wang H, Chen H, Zhou X, Liu X, Qiao W, Long D, Ling L, J. Environ. Sci., 25, 124, 2013