Issue
Korean Journal of Chemical Engineering,
Vol.39, No.7, 1805-1820, 2022
Eco-friendly adsorption of dye pollutants by palygorskite in aqueous effluents: Experimental and computational studies
Palygorskite clay mineral (Pal) was employed in the removal of Congo red (CR) and methylene blue (MB) dyes pollutants in aqueous effluents by the adsorption process. The materials, Pal raw and acid Pal (Apal), were characterized by SEM, EDX, XRD, XFR, FTIR, XPS and Raman spectroscopy techniques that evidenced the main active sites of clay mineral. Characterization data indicated that acid treatment caused a leaching process of metallic cations on the Pal surface. As result, the maximum adsorption capacity was increased from 11.3 to 120.5mg·g-1 and from 2.7 to 238.1mg·g-1 for MB and CR dyes, respectively. The regeneration result after five cycles was of 75% recovered to MB adsorption into Apal. Semi-empirical quantum mechanical (SQM) calculations were performed to identify the mechanism of interaction between the Pal surface and dyes. High correlation (R2>0.99) was observed for the experimental data using the pseudo-second-order kinetic model, that were confirmed by computed enthalpy values (-298.7 to - 84.5 kJ·mol-1), suggesting a chemisorption process as the determining step. Furthermore, the experimental and computational results indicated that the Pal also could work removing efficiently two dyes simultaneously with an adsorption capacity of 37.2 and 40.4mg·g-1 for MB and CR, respectively.
[References]
  1. Divriklioglu M, Akar ST, Akar T, Environ. Sci. Pollut. Res., 26, 25834, 2019
  2. Crini G, Torri G, Lichtfouse E, Kyzas GZ, Wilson LD, Morin-Crini N, Environ. Chem. Lett., 17, 1645, 2019
  3. Youcef LD, Belaroui LS, Lópes-Galindo A, Appl. Clay Sci., 179, 105145, 2019
  4. Prajapati AK, Mondal MK, J. Mol. Liq., 307, 112949, 2020
  5. Eltaweil AS, Elgarhym GS, El-Subruiti GM, Omer AM, Int. J. Biol. Macromol., 154, 307, 2020
  6. Li Z, Hanafy H, Zhang L, Sellaoui L, Netto MS, Oliveira MLS, Seliem MK, Dotto GL, Bonilla-Petriciolet A, Li Q, Chem. Eng. J., 388, 124263, 2020
  7. Wekoye JN, Wanyonyi WC, Wangila PT, Tonui MK, Environ. Chem. Ecotoxicol., 2, 24, 2020
  8. Saleh TA, Elsharif AM, Bin-Dahman OA, J. Mol. Liq., 340, 117024, 2021
  9. Basaleh AA, Al-Malack MH, Saleh TA, J. Environ. Chem. Eng., 9, 105126, 2021
  10. Chaari I, Fakfakh E, Medhioub M, Jamoussi F, J. Mol. Struct., 1179, 679, 2019
  11. Souza PR, Dotto GL, Salau NPG, J. Environ. Chem. Eng., 7, 102891, 2019
  12. Pan J, Li R, Zhai L, Zhang Z, Ma J, Liu H, J. Clean Prod., 217, 371, 2019
  13. Zhang U, Wang W, Zhang J, Liu P, Wang A, Chem. Eng. J., 263, 390, 2015
  14. Moreira MA, Ciuffi KJ, Rives V, Vicente MA, Trujillano R, Gil A, Korili SA, Faria EH, Appl. Clay Sci., 135, 394, 2017
  15. Qiu G, Xie Q, Liu H, Chen T, Xie J, Li H, Appl. Clay Sci., 118, 107, 2015
  16. Zha F, Huang W, Wang J, Chang Y, Ding J, Ma J, Chem. Eng. J., 215, 579, 2013
  17. Middea A, Fernandes TLAP, Neumann R, Gomes OFM, Spinelli LS, Appl. Surf. Sci., 282, 253, 2013
  18. Li W, Liu J, Su J, Wu J, Xia Y, Zhu L, Xu Z, Zhao W, Yan Y, Zhang D, J. Clean Prod., 226, 781, 2019
  19. Rietveld HM, Acta Crystallogy, 22, 151, 1967
  20. Choi AES, Roces S, Dugos N, Arcega A, Wan MW, J. Clean Prod., 161, 267, 2017
  21. Tong KS, Kassin MJ, Azraa A, Chem. Eng. J., 170, 145, 2011
  22. Raganati F, Alfe M, Gargiulo V, Chirone R, Ammendola P, Chem. Eng. J., 372, 526, 2019
  23. Habibi A, Belaroui LS, Bengueddach A, Galindo AL, Díaz CIS, Peña A, Microporous Mesoporous Mater., 268, 293, 2018
  24. Spicher S, Grimme S, Angew. Chem.-Int. Edit., 59, 2, 2020
  25. Klamt A, Schüürmann G, J. Chem. Soc.-Perkin Trans. 2, 2, 799, 1993
  26. Stewart JP, MOPAC2016, Stewart Computational Chemistry, Colorado Springs, CO, USA. http://OpenMOPAC.net (accessed 29 June 2021).
  27. Stewart JJP, Int. J. Quantum Chem., 58, 133, 1996
  28. Li A, Muddana HS, Gilson MK, J. Chem. Theory Comput., 10, 1563, 2014
  29. Daniel CRA, Rodrigues NM, Costa NB Jr, Freire RO, J. Phys. Chem. C, 119, 23398, 2015
  30. Enescu M, Ridard J, Gheorghe V, Levy B, J. Phys. Chem. B, 106, 176, 2002
  31. Xiaoyan W, Sun Y, Pan D, Niu Z, Xu Z, Jiang Y, Wu W, Li Z, Zhang L, Fan Q, Appl. Clay Sci., 183, 105363, 2019
  32. Lu Y, Wang W, Wang Q, Xu J, Wang A, Appl. Clay Sci., 183, 105301, 2019
  33. Huang D, Zheng Y, Quan Q, Appl. Clay Sci., 183, 105314, 2019
  34. Rosendo FRGV, Pinto LIF, de Lima IS, Trigueiro P, Honório LMDC, Fonseca MG, Silva-Filho EC, Ribeiro AB, Furtini MB, Osajima JA, Appl. Clay Sci., 188, 105499, 2020
  35. Cecilia JA, Vilarrasa-García E, Cavalcante CL, Azevedo DCS, Franco F, Rodríguez-Castellón E, J. Environ. Chem. Eng., 6, 4573, 2018
  36. Wang D, Zhu L, Qiu J, Zhu P, Appl. Clay Sci., 185, 105421, 2020
  37. Frini-Srasra N, Srasra E, Desalination, 250, 26, 2010
  38. Zhu J, Zhang P, Wang Y, Wen K, Su X, Zhu R, He H, Xi Y, Appl. Clay Sci., 159, 60, 2018
  39. Wang C, Zou X, Liu H, Chen T, Suib SL, Chen D, Xie J, Li M, Sun F, Appl. Surf. Sci., 486, 420, 2019
  40. Saleh TA, Gupta VK, Curr. Nanosc., 8, 739, 2012
  41. Chen Q, Zhu R, Deng L, Ma L, He Q, Du J, Fu H, Zhang J, Wang A, Chem. Eng. J., 378, 122131, 2019
  42. Zhang M, Lu J, Zhu C, Xiang Y, Xu L, Chen T, Solid State Sci., 90, 76, 2019
  43. Amari A, Gannouni H, Khan MI, Almesfer MK, Elkhaleefa AM, Gannouni A, Appl. Sci., 8, 2302, 2018
  44. Ardizzone S, Bianchi CL, Fadoni M, Vercelli B, Appl. Surf. Sci., 119, 253, 1997
  45. Bentahar S, Dbik A, Khomri ME, Messaoudi NE, Lacherai A, J. Environ. Chem. Eng., 5, 5921, 2017
  46. Wang G, Zhang Y, Wang S, Wang Y, Song H, Lv S, Li C, Environ. Sci. Water Res. Technol., 6, 1568, 2020
  47. Shaban M, Abukhadra MR, Khan AAP, Jibali BM, J. Taiwan Inst. Chem. Eng., 82, 102, 2018
  48. Oliveira MF, Silva MGC, Vieira MGA, Appl. Clay Sci., 168, 366, 2018
  49. Langmuir I, J. Am. Chem. Soc., 38, 2221, 1918
  50. Li T, Liao T, Su X, Yu X, Han B, Zhu Y, Zhang Y, Environ. Sci. Water Res. Technol., 4, 1671, 2018
  51. Bhattacharyya KG, Gupta SS, Desalination, 272, 6, 2011
  52. Mouni L, Belkhiri L, Bollinger JC, Bouzaza A, Assadi A, Tirri A, Dahmouni F, Madani K, Remini H, Appl. Clay Sci., 153, 38, 2018
  53. Hajjaji W, Andrejkovičová S, Tobaldi DM, Lopez-Galindo A, Jammoussi F, Rocha F, Labrincha JA, Clay Min., 51, 19, 2016
  54. Amrhar O, Nassali H, Elyoubi MS, J. Mater. Environ. Sci., 6, 3054, 2006
  55. Ngulube T, Gumbo JR, Masind V, Maity A, J. Mol. Struct., 1184, 389, 2019
  56. Liu J, Wang N, Zhang H, Baevens J, J. Environ. Conv. Manag., 238, 473, 2019
  57. Tian C, Feng C, Wei M, Wu Y, Chemosphere, 208, 476, 2018
  58. Ausavasuki A, Kampoosaen C, Kengnok O, J. Clean Prod., 134, 506, 2016
  59. Chahkandi M, Mater. Chem. Phys., 202, 340, 2017
  60. Crini G, Badot PM, Prog. Polym. Sci, 33, 399, 2008
  61. Panczyk T, Wolski P, Jagusiak A, Drach M, RSC Adv., 4, 47304, 2014
  62. Zhou L, Johnson R, Habteyes T, Guo H, J. Chem. Phys., 146, 164701, 2017
  63. Huber RG, Margreiter MA, Fuchs JE, von Grafenstein S, Tautermann CS, Liedl KR, Fox T, J. Chem. Inf. Model., 54, 1371, 2014