Issue
Korean Journal of Chemical Engineering,
Vol.39, No.6, 1651-1657, 2022
In silico prediction and analysis of dielectric constant of ionic liquids
Ionic liquids (ILs) are a class of chemicals comprising cations and anions whose properties can be controlled by modifying their chemical structure, which enables a wide range of applications. Among the attractive properties of ILs, dielectric permittivity provides important information related to material solvation and capacitor characteristics. Because there are several ILs and a need to understand the structural effect on their properties, prediction model(s) should be developed. For this, we employed the linear free-energy relationship (LFER) equation to predict the dielectric constant of ILs. In the modeling, we used in silico calculated molecular descriptors because the empirically LFER estimated descriptors were limited. The results revealed that the developed model could predict the dielectric constant with an R2 of 0.882. From the developed model, it was observed that the dielectric constant was more affected by the structure of cations compared to that of anions. In addition, the H-bonding acidity of the cation and basicity of the anion contributed to the dielectric property of ILs, and the dipolarity/polarizability of cations and anions was also important in the prediction. The predictive model is expected to be useful for designing IL structures considering the dielectric constant.
[References]
  1. Greer AJ, Jacquemin J, Hardacre C, Molecules, 25, 5270, 2020
  2. Plechkova NV, Seddon KR, Chem. Soc. Rev., 37, 123, 2008
  3. Huang MM, Weingartner H, ChemPhysChem, 9, 2172, 2008
  4. Moldoveanu SC, David V, in Essentials in modern HPLC separations, Moldoveanu SC, David V Eds., Elsevier Science Publishing Co Inc, MA (2013).
  5. McKeen LW (Ed.) Film properties of plastics and elastomers (Third edition), William Andrew Publishing, Boston, MA (2012).
  6. Holbrey JS, Kenneth R, J. Clean Prod., 1, 223, 1999
  7. Costa PCS, Evangelista JS, Leal I, Miranda P, Mathematics, 9, 3110, 2021
  8. Cho CW, Preiss U, Jungnickel C, Stolte S, Arning J, Ranke J, Klamt A, Krossing I, Thöming J, J. Phys. Chem. B, 115, 6040, 2011
  9. Cho CW, Stolte S, Yun YS, Sci. Total Environ., 633, 920, 2018
  10. Cho CW, Yun YS, Environ. Pollut., 255, 113185, 2019
  11. Cho CW, Zhao YF, Choi JW, Kim JA, Bediako JK, Lin S, Song MH, Yun YS, Environ. Res., 192, 110271, 2021
  12. Abraham MH, Acree WE, J. Org. Chem., 75, 3021, 2010
  13. Abraham MH, Acree WE, Phys. Chem. Chem. Phys., 12, 13182, 2010
  14. Abraham MH, Acree WE, J. Chromatogr. A, 1430, 2, 2016
  15. Cho CW, Park JS, Stolte S, Yun YS, J. Hazard. Mater., 311, 168, 2016
  16. Cho CW, Zhao Y, Yun YS, Water Res., 151, 288, 2019
  17. Endo S, Brown TN, Watanabe N, Ulrich N, Bronner G, Abraham M, Goss KU, Leipzig, Germany, Helmholtz Centre for Environmental Research-UFZ (2015).
  18. Cho CW, Stolte S, Yun YS, Krossing I, Thöming J, RSC Adv., 5, 80634, 2015
  19. Zhou Y, Lin Z, Wu KJ, Xu GH, He CH, Chin. J. Chem. Eng., 22, 79, 2014
  20. Rybinska-Fryca A, Sosnowska A, Puzyn T, J. Mol. Liq., 260, 57, 2018
  21. Eiden P, Bulut S, Köchner T, Friedrich C, Schubert T, Krossing I, J. Phys. Chem. B, 115, 300, 2011
  22. Huang MM, Jiang YP, Sasisanker P, Driver GW, Weingartner H, J. Chem. Eng. Data, 56, 1494, 2011
  23. Weingartner H, Sasisanker P, Daguenet C, Dyson PJ, Krossing I, Slattery JM, Schubert T, J. Phys. Chem. B, 111, 4775, 2007
  24. Weingartner H, Z. Phys. Chemie-Int. J. Res. Phys. Chem. Chem. Phys., 220, 1395, 2006
  25. Nakamura K, Shikata T, ChemPhysChem, 11, 285, 2010
  26. Hunger J, Stoppa A, Schrodle S, Hefter G, Buchner R, ChemPhysChem, 10, 723, 2009
  27. Wakai C, Oleinikova A, Ott M, Weingartner H, J. Phys. Chem. B, 109, 17028, 2005
  28. Hunger J, Stoppa A, Buchner R, Hefter G, J. Phys. Chem. B, 112, 12913, 2008
  29. Stoppa A, Buchner R, Hefter G, J. Mol. Liq., 153, 46, 2010
  30. Singh T, Kumar A, J. Phys. Chem. B, 112, 12968, 2008
  31. Zhao YH, Abraham MH, J. Org. Chem., 70, 2633, 2005
  32. Abraham MH, Acree WE, J. Org. Chem., 75, 1006, 2010
  33. Parr RGY, Weitao Y, Density-functional theory of atoms and molecules, OUP, Oxford (1989).
  34. Schäfer A, Huber C, Ahlrichs R, Chem. Phys., 100, 5829, 1994
  35. Eckert F, COSMOtherm reference manual, version C3.0, Release 15.01., Leverkusen, Germany (1999-2014).
  36. O'Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR, J. Cheminformatics, 3, 33, 2011
  37. Hunger J, Stoppa A, Buchner R, Hefter G, J. Phys. Chem. B, 113, 9527, 2009
  38. Stoppa A, Hunger J, Buchner R, Hefter G, Thoman A, Helm H, J. Phys. Chem. B, 112, 4854, 2008
  39. Shi BL, J. Mol. Liq., 299, 112216, 2020