Issue
Korean Journal of Chemical Engineering,
Vol.39, No.8, 2080-2088, 2022
Preparation of N and Eu doped TiO2 using plasma in liquid process and its photocatalytic degradation activity for diclofenac
Pharmaceutical contaminants such as diclofenac (DCF) cannot be removed in existing wastewater treatment facilities; therefore, studies on application of new treatment processes and improvement of efficiency are required. In this study, a modified photocatalyst doped with nitrogen and europium was prepared and the performance of DCF was evaluated. A modified photocatalyst that responds to visible light was prepared by precipitating nitrogen and europium in a TiO2 powder using a plasma-in-liquid process (PLP). The performance of the photocatalyst was evaluated by a degradation experiment of diclofenac, a pharmaceutical ingredient. The dopant tended to precipitate in proportion to the amount of precursor added, but more nitrogen precipitated than europium even when the same amount was added. Nitrogen and europium were dispersed evenly throughout the TiO2 powder, and the Ti2p peak position of the modified TiO2 photocatalyst (MTP) coincided with bare TiO2, and europium precipitated in the form of Eu2O3. The bandgap energy of the MTPs was lower than that of unmodified TiO2 photocatalyst, but the MTP with only europium precipitated was the lowest. When a blue light source in the visible region was used, DCF decomposition by MTPs was improved by about 15 to 25 times compared to bare TiO2, and europium precipitation photocatalyst had the highest DCF decomposition characteristic. In addition, MTPs showed excellent reusability properties. Four kinds of by-products were detected in the decomposition process of DCF, and three decomposition pathways by reactions such as decarboxylation, C-N cleavage and hydroxylation were considered. The final mineralization to H2O, CO2, and chlorine occurs by hydroxylation, such as by OH, on the MTP.
[References]
  1. Holloway KA, Expert Rev. Clin. Pharmacol., 4, 335, 2011
  2. Busfield J, Soc. Sci. Med., 131, 199, 2015
  3. der Beek TA, Weber FA, Bergmann A, Hickmann S, Ebert I, Hein A, Küster A, Environ. Toxicol. Chem., 35, 823, 2016
  4. Swan GE, Cuthbert R, Quevedo M, Green RE, Pain DJ, Bartels P, Cunningham AA, Duncan N, Meharg AA, Oaks JL, Jones JP, Shultz S, Taggart MA, Verdoorn G, Wolter K, Biol. Lett., 2, 279, 2006
  5. Triebskorn R, Casper H, Heyd A, Eikemper R, Köhler HR, Schwaiger J, Aquat. Toxicol., 68, 151, 2004
  6. Zhang L, Liu Y, Fu Y, RSC Adv., 10, 9907, 2020
  7. Kanakaraju D, Motti CA, Glass BD, Oelgemoller M, Environ. Chem., 11, 51, 2014
  8. Irandost M, Akbarzadeh R, Pirsaheb M, Asadi A, Mohammadi P, Sillanpaa M, J. Mol. Liq., 291, 111342, 2019
  9. Lu X, Shao Y, Gao N, Chen J, Zhang Y, Xiang H, Guo Y, Ecotox. Environ. Safe., 141, 139, 2017
  10. Ki SJ, Jeon KJ, Park YK, Jeong S, Lee H, Jung SC, Catal. Today, 293, 15, 2017
  11. Lee H, Park SH, Park YK, Kim SJ, Seo SG, Ki SJ, Jung SC, Chem. Eng. J., 278, 259, 2015
  12. Jung SC, Water Sci. Technol., 63, 1491, 2011
  13. Lee DJ, Park YK, Kim SJ, Lee H, Jung SC, Korean J. Chem. Eng., 32, 1188, 2015
  14. Hua Z, Dai Z, Bai X, Ye Z, Gua H, Huang X, J. Hazard. Mater., 293, 112, 2015
  15. Lee H, Park YK, Kim SJ, Kim BH, Jung SC, J. Ind. Eng. Chem., 32, 259, 2015
  16. Zhang Y, Li Q, Solid State Sci., 16, 16, 2013
  17. Ki SJ, Park YK, Kim JS, Lee WJ, Lee H, Jung SC, Chem. Eng. J., 377, 120087, 2019
  18. Lee H, Park IS, Bang HJ, Park YK, Kim H, Ha HH, Kim BJ, Jung SC, Appl. Surf. Sci., 471, 893, 2019
  19. Lee H, Park IS, Bang HJ, Park YK, Cho EB, Kim BJ, Jung SC, Appl. Surf. Sci., 481, 625, 2019
  20. Kim SC, Park YK, Jung SC, Korean J. Chem. Eng., 38, 885, 2021
  21. Chung KH, Jeong S, Lee H, Kim SJ, Jeon KJ, Park YK, Jung SC, Int. J. Hydrog. Energy, 42, 24099, 2017
  22. Lee H, Park SH, Seo SG, Kim SJ, Kim SC, Park YK, Jung SC, Curr. Nanosci., 10, 7, 2014
  23. Kim SC, Park YK, Kim BH, Kim H, Lee WJ, Lee H, Jung SC, Korean J. Chem. Eng., 35, 750, 2018
  24. Jeong S, Chung KH, Lee H, Park H, Jeon KJ, Park YK, Jung SC, ACS Sustain. Chem. Eng., 5, 3659, 2017
  25. Lee H, Kim BH, Park YK, An KH, Choi YJ, Jung SC, Int. J. Hydrog. Energy, 41, 7582, 2016
  26. Mun MK, Lee WO, Park JW, Kim DS, Yeom GY, Kim DW, Appl. Sci. Converg. Technol., 26, 164, 2017
  27. Pitchaimuthu S, Honda K, Suzuki S, Naito A, Suzuki N, Katsumata K, Nakata K, Ishida N, Kitamura N, Idemoto Y, Kondo T, ACS Omega, 3, 898, 2018
  28. Heo YK, Bratescu MA, Ueno T, Saito N, J. Appl. Phys., 116, 024302, 2014
  29. Ihnatiuk D, Tossi C, Tittonen I, Linnik O, Catalysts, 10, 1074, 2020
  30. Anwer S, Bharath G, Iqbal S, Qian H, Masood T, Liao K, Cantwell WJ, Zhang J, Zheng L, Electrochim. Acta, 283, 1095, 2018
  31. Tian J, Gao H, Kong H, Yang P, Zhang W, Chu J, Nanoscale Res. Lett., 8, 533, 2013
  32. Camps I, Borlaf M, Colomer MT, Moreno R, Duta L, Nita C, del Pino AP, Logofatu C, Serna R, Gyorgy E, RSC Adv., 7, 37643, 2017
  33. Chen D, Jiang Z, Geng J, Wang Q, Yang D, Ind. Eng. Chem. Res., 46, 2741, 2007
  34. Yan G, Zhang M, Hou J, Yang J, Mater. Chem. Phys., 1129, 553, 2011
  35. Khan TT, Bari GAKMR, Kang HJ, Lee TG, Park JW, Hwang HJ, Hossain SM, Mun JS, Suzuki N, Fujishima A, Catalysts, 11, 109, 2021
  36. Liu WQ, Wu D, Chang H, Duan RX, Wu WJ, Amu G, Chao KF, Bao FQ, Tegus O, Nanomaterials, 8, 66, 2018
  37. Zeng CH, Zheng K, Lou KL, Meng XT, Yan ZQ, Ye ZN, Su RR, Zhong S, Electrochim. Acta, 165, 396, 2015
  38. Ansari SA, Khan MM, Ansari MO, Cho MH, New J. Chem., 40, 3000, 2016
  39. Myilsamy M, Mahalakshmi M, Subha N, Rajabhuvaneswari A, Murugesan V, RSC Adv., 6, 35024, 2016
  40. Rizzo L, Meric S, Kassinos D, Guida M, Russo F, Belgiorno V, Water Res., 43, 979, 2009
  41. Di Credico B, Bellobono R, D’Arienzo M, Fumagalli D, Redaelli M, Scotti R, Morazzoni F, Int. J. Photoenergy, 2015, 919217, 2015
  42. Lx LAM, González AE, Cipagauta-Díaz S, Gómez R, J. Chem. Technol. Biotechnol., 95, 2694, 2020
  43. Wang J, Tafen DN, Lewis JP, Hong Z, Manivannan A, Zhi M, Li M, Wu N, J. Am. Chem. Soc., 131, 12290, 2009
  44. Chen D, Zhu Q, Lv Z, Deng X, Zhou F, Deng Y, Mater. Res. Bull., 47, 3129, 2012
  45. Ramandi S, Entezari MH, Ghows N, Ultrason. Sonochem., 38, 234, 2017
  46. Nguyen TP, Tran QB, Ly QV, Hai LT, Le DT, Tran MB, Ho TTT, Nguyen XC, Shokouhimehr M, Vo DVN, Arab. J. Chem., 13, 8361, 2020
  47. Xu J, Ao Y, Fu D, Yuan C, J. Colloid Interface Sci., 328, 447, 2008
  48. Hu Z, Cai X, Wang Z, Li S, Wang Z, Xie X, J. Hazard. Mater., 380, 120812, 2019
  49. Shi H, Zhou G, Liu Y, Fu Y, Wang H, Wu P, RSC Adv., 9, 31370, 2019
  50. Michael I, Achilleos A, Lambropoulou D, Torrens VO, Pérez S, Petrovic M, Barceló D, Fatta-Kassinos D, Appl. Catal. B: Environ., 147, 1015, 2014
  51. Nie E, Yang M, Wang D, Yang X, Luo X, Zheng Z, Chemosphere, 113, 165, 2014
  52. Yu H, Nie E, Xu J, Yan S, Cooper WJ, Song W, Water Res., 47, 1909, 2013
  53. Salaeh S, Perisic DJ, Biosic M, Kusic H, Babic S, Stangar UL, Dionysiou DD, Bozic AL, Chem. Eng. J., 304, 289, 2016