Issue
Korean Journal of Chemical Engineering,
Vol.39, No.6, 1496-1506, 2022
Preparation and characterization of room-temperature chemically expanded graphite: Application for cationic dye removal
A facile, effective, and eco-friendly process was developed for the preparation of chemically expanded graphite (CEG) under ambient conditions using natural flake graphite as raw material, potassium permanganate (KMnO4) as an oxidative intercalating agent, and hydrogen peroxide (H2O2) as the reactive species. The results showed that the CEG had an interconnected and highly porous structure, and some oxygen-containing groups were grafted on the graphite layer by the oxidation-intercalation process. The absence of the graphite diffraction peak at 26o in the XRD pattern of expanded graphite (EG) indicates that the intercalation and expansion processes were complete, and most of the starting graphite layers were converted into the graphene sheets. The sulfuric acid concentration was the most effective parameter on the expansion, and the maximum expansion occurred at a sulfuric acid concentration of 77.5%. The other optimum preparation conditions were obtained at 1.5 g of KMnO4 and 30mL of H2O2 30%. Under the optimal condition, the developed room-temperature liquid-phase intercalation and expansion processes led to an expansion volume of up to 250 times. The potential application of the as-prepared CEG in environmental clean-up was evaluated by adsorptive removal of methylene blue (MB) from the aqueous solution. The kinetic studies exhibited that the MB adsorption onto the CEG followed a pseudo-second-order kinetic model. Equilibrium data were fitted well with the Langmuir model with a maximum adsorption capacity of 399.08mg g-1. The findings indicate that the CEG would be potentially applicable in water purification.
[References]
  1. Zhao YF, Xiao M, Wang SJ, Ge XC, Meng YZ, Compos. Sci. Technol., 67, 2528, 2007
  2. Chung DDL, J. Mater. Sci., 51, 554, 2015
  3. Lorenzetti A, Dittrich B, Schartel B, Roso M, Modesti M, J. Appl. Polym. Sci., 134, 1, 2017
  4. Peng T, Liu B, Gao X, Luo L, Sun H, Appl. Surf. Sci., 444, 800, 2018
  5. Tichapondwa SM, Tshemese S, Mhike W, Chem. Eng. Trans., 70, 847, 2018
  6. Xu C, Jiao C, Yao R, Lin A, Jiao W, Environ. Pollut., 233, 194, 2018
  7. Zhao M, Liu P, Desalination, 249, 331, 2009
  8. Zhou YY, Wang SW, Kim KN, Li JH, Yan XP, Talanta, 69, 970, 2006
  9. Zhang F, Zhao Q, Yan X, Li H, Zhang P, Wang L, Zhou T, Li Y, Ding L, Food Chem., 197, 943, 2016
  10. Ding X, Wang R, Zhang X, Zhang Y, Deng S, Shen F, Zhang X, Xiao H, Wang L, Mar. Pollut. Bull., 81, 185, 2014
  11. Tryba B, Morawski AW, Kaleńczuk RJ, Inagaki M, Spill Sci. Technol. Bull., 8, 569, 2003
  12. Yang M, Zhao Y, Sun X, Shao X, Li D, Desalin. Water Treat., 52, 283, 2014
  13. Jiao X, Zhang L, Qiu Y, Yuan Y, RSC Adv., 7, 38350, 2017
  14. Jiang L, Zhang J, Xu X, Zhang J, Liu H, Guo Z, Kang Y, Li Y, Xu J, Appl. Surf. Sci., 357, 2355, 2015
  15. Xu C, Yang W, Liu W, Sun H, Jiao C, Lin A, J. Environ. Sci., 67, 14, 2018
  16. Carvallho MN, Da Silva KS, Sales DCS, Freire EMPL, Sobrinho MAM, Ghislandi MG, Water Sci. Technol., 73, 2189, 2016
  17. Kong Y, Yuan J, Wang Z, Yao S, Chen Z, Appl. Clay Sci., 46, 358, 2009
  18. Pang XY, Gong F, E-Journal Chem., 5, 802, 2008
  19. Van Heerden X, Badenhorst H, Carbon, 88, 173, 2015
  20. Lin S, Dong L, Zhang J, Lu H, Chem. Mater., 28, 2138, 2016
  21. Celzard A, Mareché JF, Furdin G, Prog. Mater. Sci., 50, 93, 2005
  22. Afanasov IM, Shornikova ON, Kirilenko DA, Vlasov II, Zhang L, Verbeeck J, Avdeev VV, Van Tendeloo G, Carbon, 48, 1862, 2010
  23. Wu L, Li W, Li P, Liao S, Qiu S, Chen M, Guo Y, Li Q, Zhu C, Liu L, Small, 10, 1421, 2014
  24. Xue Z, Zhao S, Zhao Z, Li P, Gao J, J. Mater. Sci., 51, 4928, 2016
  25. He P, Zhou J, Tang H, Yang S, Liu Z, Xie X, Ding G, J. Colloid Interface Sci., 542, 387, 2019
  26. Dong L, Chen Z, Lin S, Wang K, Ma C, Lu H, Chem. Mater., 29, 564, 2017
  27. Chen Y, Li S, Luo R, Lv X, Wang X, New Carbon Mater., 28, 435, 2013
  28. An JC, Lee EJ, Hong I, J. Ind. Eng. Chem., 47, 56, 2017
  29. Melezhyk AV, Tkachev AG, Nanosyst. Physics, Chem. Math., 5, 294, 2014
  30. Park S, Kim J, Jeon KJ, Yoon SH, J. Nanosci. Nanotechnol., 16, 4450, 2016
  31. Sorokina NE, Nikol’skaya IV, Ionov SG, Avdeev VV, Russ. Chem. Bull., 54, 1749, 2005
  32. Li J, Da H, Liu Q, Liu S, Mater. Lett., 60, 3927, 2006
  33. Ying Z, Lin X, Qi Y, Luo J, Mater. Res. Bull., 43, 2677, 2008
  34. Lin Y, Huang ZH, Yu X, Shen W, Zheng Y, Kang F, Electrochim. Acta, 116, 170, 2014
  35. Zhao W, Tan PH, Liu J, Ferrari AC, J. Am. Chem. Soc., 133, 5941, 2011
  36. Zhao T, Jin W, Wang Y, Ji X, Yan H, Khan M, Jiang Y, Dang A, Li H, Li T, Mater. Lett., 212, 1, 2018
  37. Dimiev AM, Ceriotti G, Metzger A, Kim ND, Tour JM, ACS Nano, 10, 274, 2016
  38. Li JH, Feng LL, Jia ZX, Mater. Lett., 60, 746, 2006
  39. Dreyer DR, Park S, Bielawski W, Ruoff RS, Chem. Soc. Rev., 39, 228, 2010
  40. Kumar N, Srivastava VC, ACS Omega, 3, 10233, 2018
  41. Kudin KN, Ozbas B, Schniepp HC, Prud’homme RK, Aksay IA, Car R, Nano Lett., 8, 36, 2008
  42. Zhai Z, Pang X, Lin R, Sun S, Weng M, Asian J. Chem., 27, 2971, 2015
  43. Liu T, Zhang R, Zhang X, Liu K, Liu Y, Yan P, Carbon, 119, 544, 2017
  44. Rooper C, Martin M, Butler J, Jones D, Weber T, Wilson C, De Robertis A, Wilkins M, Zimmermann M, Fish. Bull., 110, 317, 2012
  45. Freundlich HMF, J. Phys. Chem., 57, e470, 1906
  46. Temkin MJ, Pyzhev V, Acta Physicochim. URSS, 12, 217, 1940
  47. Abbasi M, Safari E, Baghdadi M, Janmohammadi M, J. Water Process Eng., 40, 101961, 2021
  48. Bagheban M, Mohammadi A, Baghdadi M, Janmohammadi M, Salimi M, J. Environ. Heal. Sci. Eng., 17, 827, 2019
  49. Yang J, Qiu K, Chem. Eng. J., 165, 209, 2010
  50. Saini J, Garg VK, Gupta RK, J. Mol. Liq., 250, 413, 2018
  51. Zhao M, Tang Z, Liu P, J. Hazard. Mater., 158, 43, 2008
  52. Ravelonandro PH, Ratianarivo DH, Joannis-Cassan C, Isambert A, Raherimandimby M, J. Chem. Technol. Biotechnol., 83, 842, 2008
  53. Bulut Y, Aydin H, Desalination, 194, 259, 2006
  54. Mouni L, Belkhiri L, Bollinger JC, Bouzaza A, Assadi A, Tirri A, Dahmoune F, Madani K, Remini H, Appl. Clay Sci., 153, 38, 2018
  55. Huang T, Yan M, He K, Huang Z, Zeng G, Chen A, Peng M, Li H, Yuan L, Chen G, J. Colloid Interface Sci., 543, 43, 2019
  56. Ghaedi M, Roosta M, Ghaedi AM, Ostovan A, Tyagi I, Agarwal S, Gupta VK, Res. Chem. Intermed., 44, 2929, 2018
  57. Bedin KC, Souza IPAF, Cazetta AL, Spessato L, Ronix A, Almeida VC, J. Mol. Liq., 269, 132, 2018
  58. Oliva J, Martinez AI, Oliva AI, Garcia CR, Martinez-Luevanos A, Garcia-Lobato M, Ochoa-Valiente R, Berlanga A, Appl. Surf. Sci., 436, 739, 2018
  59. Li Z, Tang X, Liu K, Huang J, Peng Q, Ao M, Huang Z, J. Environ. Manage., 218, 363, 2018
  60. Chaukura N, Murimba EC, Gwenzi W, Environ. Technol. Innov., 8, 132, 2017
  61. Liu T, Li Y, Du Q, Sun J, Jiao Y, Yang G, Wang Z, Xia Y, Zhang W, Wang K, Zhu H, Wu D, Colloids Surf. B: Biointerfaces, 90, 197, 2012
  62. Yan H, Tao X, Yang Z, Li K, Yang H, Li A, Cheng R, J. Hazard. Mater., 268, 191, 2014
  63. Wang P, Cao M, Wang C, Ao Y, Hou J, Qian J, Appl. Surf. Sci., 290, 116, 2014
  64. Jiang L, Wen Y, Zhu Z, Liu X, Shao W, Chemosphere, 265, 129169, 2021