Issue
Korean Journal of Chemical Engineering,
Vol.39, No.6, 1436-1449, 2022
Temperature nonuniformity management in heat sinks through applying counter-flow design complex minichannels
Thanks to the electronic industrial revolution, miniaturization, which is a trend to manufacture smaller products and devices, has been extended to hardware components. In these devices, the heat flux magnitude increases due to the smaller surface area. Therefore, heat dissipation and temperature uniformity are crucial issues that must be managed precisely, otherwise destructive effects on system performance and device lifespan are unavoidable. Heat sinks are efficient equipment utilized to solve these dire consequences. In this study, to improve the temperature uniformity of electronic components, novel minichannels, including straight walls with wavy fins (SWS) and wavy walls with straight fins (WSW), were examined with counter-flow patterns. The observations imply that these novel minichannels bring 18.1-40.3% decrease of the base temperature under the heat flux of 100 kW m-2. It is also revealed that using the novel minichannels can increase the temperature uniformity up to 93.1%. In addition, overall hydrothermal performance can be enhanced as high as 1.64 under the pumping power of 0.0374W. It was also found that the use of WSW models leads to lower magnitudes of pumping power compared to SWS models. It is concluded that applying the proposed minichannels could be an efficient approach to manage temperature non-uniformity in heat sinks.
[References]
  1. Guo X, Fan Y, Luo L, Chem. Eng. J., 227, 116, 2013
  2. Wu HY, Cheng P, Int. J. Heat Mass Transf., 46, 2547, 2003
  3. Roth R, Lenk G, Cobry K, Woias P, Int. J. Heat Mass Transf., 67, 1, 2013
  4. The AL, Phoo YW, Chin WM, Ooi EH, Foo JJ, Chem. Eng. Res. Des., 156, 226, 2020
  5. Wang G, Niu D, Xie F, Wang Y, Zhao X, Ding G, Appl. Therm. Eng., 85, 61, 2015
  6. Ahmed HE, Appl. Therm. Eng., 102, 1422, 2016
  7. Khoshvaght-Aliabadi M, Deldar S, Hassani SM, Int. J. Mech. Sci., 148, 442, 2018
  8. Sakanova A, Keian CC, Zhao J, Int. J. Heat Mass Transf., 89, 59, 2015
  9. Khoshvaght-Aliabadi M, Ahmadian E, Sartipzadeh O, Int. Commun. Heat Mass Transf., 81, 19, 2017
  10. Salami M, Khoshvaght-Aliabadi M, Feizabadi A, J. Therm. Anal. Calorim., 138, 3159, 2019
  11. Zhou JD, Hatami M, Song DX, Jing D, Int. J. Heat Mass Transf., 103, 715, 2016
  12. Chai L, Xia GD, Wang L, Zhou M, Cui Z, Int. J. Heat Mass Transf., 62, 741, 2013
  13. Zhai YL, Xia GD, Liu XF, Li YF, Int. J. Heat Mass Transf., 84, 293, 2015
  14. Xia GD, Jiang J, Wang J, Zhai YL, Ma DD, Int. J. Heat Mass Transf., 80, 439, 2015
  15. Rubio-Jimenez CA, Kandlikar SG, Hernandez-Guerrero A, IEEE Trans. Compon. Packag. Manuf. Technol., 2, 825, 2012
  16. Rubio-Jimenez CA, Kandlikar SG, Hernandez-Guerrero A, IEEE Trans. Compon. Packaging. Manuf. Technol., 3, 86, 2013
  17. Vilarrubí M, Riera S, Ibañez M, Omri M, Laguna G, Fréchette L, Barraua J, Int. J. Therm. Sci., 132, 424, 2018
  18. Feng S, Yan Y, Li H, He Z, Zhang L, Int. J. Heat Mass Transf., 156, 119675, 2020
  19. Feng S, Yan Y, Li H, Yang Z, Li L, Zhang L, Appl. Therm. Eng., 153, 748, 2019
  20. Feng S, Yan Y, Li H, Xu F, Zhang L, Int. J. Heat Mass Transf., 159, 120118, 2020
  21. Lorenzini-Gutierrez D, Kandlikar SG, J. Electron. Packag., 136, 021007, 2014
  22. Gonzalez-Hernandez JL, Kandlikar SG, Hernandez-Guerrero A, Heat Transf. Eng., 37, 1369, 2016
  23. Li P, Guo D, Huang X, Int. J. Heat Mass Transf., 146, 118846, 2020
  24. Leng C, Wang XD, Wang TH, Yan WM, Energy Conv. Manag., 93, 141, 2015
  25. Khoshvaght-Aliabadi M, Hormozi F, Arab. J. Sci. Eng., 38, 3515, 2013
  26. Bahiraei M, Mazaheri N, Daneshyar MR, Appl. Therm. Eng., 183, 116159, 2021
  27. Webb RL, Int. J. Heat Mass Transf., 24, 715, 1981
  28. Tikadar A, Paul TC, Oudah SK, Abdulrazzaq NM, Salman AS, Khan JA, Int. Commun. Heat Mass Transf., 111, 104447, 2020
  29. Chamanroy Z, Khoshvaght-Aliabadi M, Int. J. Therm. Sci., 146, 106071, 2019
  30. Hassani SM, Khoshvaght-Aliabadi M, Mazloumi SH, Chem. Eng. Sci., 191, 436, 2018
  31. Khoshvaght-Aliabadi M, Feizabadi A, Khaligh SF, Int. J. Mech. Sci., 157, 25, 2019
  32. Khoshvaght-Aliabadi M, Feizabadi A, Sol. Energy, 199, 552, 2020
  33. Tikadar A, Oudah SK, Paul TC, Salman AS, Morshed AKMM, Khan JA, Appl. Therm. Eng., 153, 15, 2019
  34. Xia G, Chai L, Wang H, Zhou M, Cui Z, Appl. Therm. Eng., 31, 1208, 2011
  35. Chai L, Xia G, Zhou M, Li J, Qi J, Appl. Therm. Eng., 51, 880, 2013
  36. Li YF, Xia GD, Ma DD, Jia YT, Wang J, Int. J. Heat Mass Transf., 98, 17, 2016
  37. Ghani IA, Kamaruzaman N, Sidik NAC, Int. J. Heat Mass Transf., 108, 1969, 2017