Issue
Korean Journal of Chemical Engineering,
Vol.39, No.4, 1053-1064, 2022
Composites derived from synthetic clay and carbon sphere: Preparation, characterization, and application for dye decontamination
Two new composites from synthetic clay-like materials and carbon spheres were developed. Layered doubled hydroxides (LDH) were synthesized from the coprecipitation of Mg2+ and Al3+ ions. Spherical hydrochar (SH) was prepared from pure glucose through hydrothermal carbonization at 190℃. The composite LDH–SH was synthesized through a simple hydrothermal method of the mixture of LDH and SH. Another composite, LDO-SB, was directly prepared through the carbonization of LDH-SH at 500 ℃. Under such high temperature, LDH was converted to layered doubled oxides (LDO), and SH was transferred to spherical biochar (SB). Those materials were characterized by chemical stability, surface morphology and element composition, crystal structure, surface functional group, and textural characteristic. They were applied for removing cationic dye (methylene blue; MB) and anionic dye (Congo red; CR) under different pH solutions. Three adsorption components—kinetics, isotherm, and thermodynamics—were conducted under batch experimenters. Results demonstrated that the LDH or LDO particles were assembled on the surface of SH or SB, respectively. The surface area, total pore volume, and average pore width of LDH–SH and LDO-SB were 58.5 and 198m2/g, 0.319 and 0.440 cm3/g, and 21.8 and 8.89 nm, respectively. The maximum adsorption capacity of the materials, calculated from the Langmuir model, at 30℃ for CR and MB dyes was 1589 and 78.6mg/g (LDOSB) and 499 and 226mg/g (LDH-SH), respectively. The composites exhibited a higher affinity to anionic than cationic dyes, which resulted from the great contribution of the clay-like materials. Therefore, they can serve as a promising composite for the decolorization of wastewater.
[References]
  1. Ihsanullah I, Chem. Eng. J., 388, 124340, 2020
  2. Tran HN, Nguyen DT, Le GT, Tomul F, Lima F, Woo SH, Sarmah AK, Nguyen HQ, Nguyen PT, Nguyen DD, Nguyen TV, Vigneswaran S, Vo DVN, Chao HP, J. Hazard. Mater., 373, 258, 2019
  3. Janani FZ, Taoufik N, Khiar H, Boumya W, Elhalil A, Sadiq M, Puga AV, Barka N, Sur. Interfaces, 25, 101263, 2021
  4. Galvão TLP, Neves CS, Caetano APF, Maia F, Mata D, Malheiro E, Ferreira MJ, Bastos AC, Salak AN, Gomes JRB, Tedim J, Ferreira MGS, J. Colloid Interface Sci., 468, 86, 2016
  5. Yang S, Wang L, Zhang X, Yang W, Song G, Chem. Eng. J., 275, 315, 2015
  6. Lei C, Zhu X, Zhu B, Jiang C, Le Y, Yu J, J. Hazard. Mater., 321, 801, 2017
  7. Huang W, Yu X, Li D, RSC Adv., 5, 84937, 2015
  8. Li J, Fan Q, Wu Y, Wang X, Chen C, Tang Z, Wang X, J. Mater. Chem. A, 4, 1737, 2016
  9. Kazeem TS, Zubair M, Daud M, Mu’azu ND, Al-Harthi MA, Korean J. Chem. Eng., 36, 1057, 2019
  10. Shan RS, Yan LG, Yang YM, Yang K, Yu SJ, Yu HQ, Zhu BC, Du B, J. Ind. Eng. Chem., 21, 561, 2015
  11. Wang Y, Du T, Zhou L, Song Y, Che S, Fang X, Korean J. Chem. Eng., 35, 709, 2018
  12. Yang F, Zhang S, Sun Y, Tsang DCW, Cheng K, Ok YS, J. Hazard. Mater., 365, 665, 2019
  13. Tran HN, Lin CC, Woo SH, Chao HP, Appl. Clay Sci., 154, 17, 2018
  14. Kowalik P, Konkol M, Kondracka M, Próchniak W, Bicki R, Wiercioch P, Appl. Catal. A: Gen., 464-465, 339, 2013
  15. dos Santos GEdS, Lins PVdS, Oliveira LMTdM, Silva EOd, Anastopoulos I, Erto A, Giannakoudakis DA, Almeida ARFd, Duarte JLdS, Meili L, J. Clean Prod., 284, 124755, 2021
  16. Gao Z, Sasaki K, Qiu X, Langmuir, 34, 5386, 2018
  17. Gennequin C, Barakat T, Tidahy, Cousin R, Lamonier JF, Aboukaïs A, Siffert S, Catal. Today, 157, 191, 2010
  18. Tran HN, Tomul F, Nguyen HTH, Nguyen DT, Lima EC, Le GT, Chang CT, Masindi V, Woo SH, J. Hazard. Mater., 394, 122255, 2020
  19. Huang FC, Lee CK, Han YL, Chao WC, Chao HP, J. Taiwan Inst. Chem. Eng., 45, 2805, 2014
  20. Tran HN, Wen YC, Wang YF, You SJ, Environ. Technol., 40, 1376, 2019
  21. Tran HN, Lee CK, Nguyen TV, Chao HP, Environ. Technol., 39, 2747, 2018
  22. Tran HN, You SJ, Hosseini-Bandegharaei A, Chao HP, Water Res., 120, 88, 2017
  23. Zhou Q, Xie C, Gong W, Xu N, Zhou W, J. Hazard. Mater., 198, 381, 2011
  24. Lagergren SK, Sven. Vetenskapsakad. Handingarl, 24, 1, 1898
  25. Blanchard G, Maunaye M, Martin G, Water Res., 18, 1501, 1984
  26. Putnis A, Kinetics of mineral processes, An Introduction to Mineral Sciences, Cambridge University Press, Cambridge (1992).
  27. Lima EC, Dehghani MH, Guleria A, Sher F, Karri RR, Dotto GL, Tran HN, CHAPTER 3 - Adsorption: Fundamental aspects and applications of adsorption for effluent treatment, Green Technologies for the Defluoridation of Water, Elsevier (2021).
  28. Koo B, Jung SP, Chem. Eng. J., 424, 130388, 2021
  29. Tran HN, You SJ, Chao HP, J. Environ. Manage., 188, 322, 2017
  30. Tran HN, Wang YF, You SJ, Chao HP, Process Saf. Environ. Protect., 107, 168, 2017
  31. Adesina AO, Elvis OA, Mohallem NDS, Olusegun SJ, Environ. Technol., 42, 1061, 2021
  32. Moreno-Castilla C, Carbon, 42, 83, 2004
  33. Chatterjee S, Lee MW, Woo SH, Bioresour. Technol., 101, 1800, 2010
  34. Kannan N, Meenakshisundaram M, Water Air Soil Pollut., 138, 289, 2002
  35. Wu Y, Luo H, Wang H, Sep. Sci. Technol., 49, 2700, 2014
  36. Sewu DD, Boakye P, Woo SH, Bioresour. Technol., 224, 206, 2017
  37. Ahmed IM, Gasser MS, Appl. Surf. Sci., 259, 650, 2012
  38. Chang R, Thoman JW Jr., Phys. Chem. Chemi. Sci., 779, 2014
  39. Tran HN, You SJ, Chao HP, Korean J. Chem. Eng., 34, 1708, 2017
  40. Paredes-Laverde M, Salamanca M, Diaz-Corrales JD, Flórez E, Silva-Agredo J, Torres-Palma RA, J. Environ. Chem. Eng., 9, 105685, 2021