Issue
Korean Journal of Chemical Engineering,
Vol.39, No.4, 1028-1035, 2022
Influence of the sorption pressure and K2CO3 loading of a MgO-based sorbent for application to the SEWGS process
MgO-based sorbents were prepared by impregnation with K2CO3 at different loadings. This study examined the CO2 absorption and regeneration properties of MgO-based sorbents at various pressures. The CO2 capture capacity of the PMI-30 sorbent increased to 204.4mg CO2/g sorbent with increasing absorption pressure through CO2 absorption by MgO itself and K2CO3 by generating structures, such as MgCO3·3H2O and K2Mg(CO3)2. However, no KHCO3 phase was observed after CO2 absorption at 1, 10, and 20 atm. The CO2 capture capacity of the MgO and PMI-10, 20, 30, and 40 sorbents was the 94.6, 129.9, 156.6, 204.4, and 239.4mg CO2/g sorbent, respectively. The CO2 capture capacity of MgO in the PMI sorbent was relatively constant regardless of the decreasing MgO content and increasing K2CO3 content. The CO2 absorption ability of MgO was calculated by substracting theoretical CO2 capture capacity of K2CO3 from the total capacity of sorbents. The TPD experiment performed at 1 atm after CO2 absorption at 20 atm showed that the regeneration temperature of the PMI sorbents differed according to the K2CO3 loading.
[References]
  1. Notz R, Tönnies I, McCann N, Scheffknecht G, Hasse H, Chem. Eng. Technol., 34, 163, 2011
  2. Lee SC, Kwon YM, Jung SY, Lee JB, Ryu CK, Yi CK, Kim JC, Fuel, 104, 882, 2013
  3. Yong Z, Mata V, Rodrigues AE, Sep. Purif. Technol., 26, 195, 2002
  4. Lu H, Reddy EP, Smirniotis PG, Ind. Eng. Chem. Res., 45, 39449, 2006
  5. Wu SF, Li QH, Kim JN, Yi KB, Ind. Eng. Chem. Res., 47, 180, 2008
  6. Li L, King DL, Nie Z, Li XS, Howard C, Energy Fuels, 24, 3698, 2010
  7. Koirala R, Gunugunri KR, Pratsinis SE, Smirniotis PG, J. Phys. Chem. C, 115, 24804, 2011
  8. Mastin J, Arada A, Meyer J, Energy Procedia, 4, 1184, 2011
  9. Zhou Z, Qi Y, Xie M, Cheng Z, Yuan W, Chem. Eng. Sci., 74, 172, 1996
  10. Valverde JM, J. Mater. Chem. A, 1, 447, 2013
  11. Pannocchia G, Puccini M, Seggiani M, Vitolo S, Ind. Eng. Chem. Res., 46, 6696, 2007
  12. Choi SH, Drese JH, Jones CW, ChemSusChem., 2, 796, 2009
  13. Guo L, Wang X, Zhong C, Li L, Appl. Surf. Sci., 257, 8106, 2011
  14. Lee JM, Min YJ, Lee KB, Jeon SG, Na JG, Ryu HJ, Langmuir, 26, 18788, 2010
  15. Wang Q, Luo J, Zhong Z, Borgna A, Energy Environ. Sci., 4, 42, 2011
  16. Maroño M, Torreiro Y, Gutierrez L, Int. J. Greenhouse Gas Control, 14, 183, 2013
  17. Siriwardane RV, Steven RW Jr., Ind. Eng. Chem. Res., 48, 2135, 2009
  18. Hassanzadeh A, Abbasian J, Fuel, 89, 1287, 2010
  19. Lin PC, Huang CW, Hsiao CT, Teng H, Environ. Sci. Technol., 42, 2748, 2008
  20. Xiao G, Singh R, Chaffee A, Webley P, Int. J. Greenhouse Gas Control, 5, 634, 2011
  21. Fisher JC II, Siriwardane RV, Steven RW Jr., Ind. Eng. Chem. Res., 51, 5273, 2012
  22. Lee SC, Chae HJ, Lee SJ, Choi BY, Yi CK, Lee JB, Ryu CK, Kim JC, Environ. Sci. Technol., 42, 2736, 2008
  23. Zhao C, Chen X, Zhao C, Wu Y, Dong W, Energy Fuels, 26, 3062, 2012
  24. Walspurger S, Boels L, Cobden PD, Elzinga GD, Haije WG, Brink RW, ChemSusChem., 1, 643, 2008
  25. Liu S, Ma J, Guan L, Li J, Wei W, Sun Y, Microporous Mesoporous Mater., 117, 466, 2009
  26. Liu Z, Green WH, Ind. Eng. Chem. Res., 52, 9665, 2013
  27. Kenarsari SD, Fan M, Jiang G, Shen X, Lin Y, Hu X, Energy Fuels, 27, 6938, 2013