Issue
Korean Journal of Chemical Engineering,
Vol.39, No.4, 920-927, 2022
The effect of Zn doping on active Cu species and its location of Cu-exchanged mordenite for the stepwise oxidation of methane to methanol
The effect of Zn doping (0.5-3wt%) on Cu-exchanged mordenite (Cu-MOR) was investigated during the stepwise oxidation of methane to methanol. The strong interaction between Cu and ZnOx stabilized the highly-dispersed state of Cu2+ but reduced the Cu2+ bounded to extra-framework oxygen (active site), as demonstrated by the H2- TPR and XPS results. The Cu/Al and Zn/Al ratios suggested that Zn preferably bonded to the sites in the 8-MR channel, which led to highly dispersed Cu2+ anchored onto the highly accessible sites (12-MR and 8-MR side pocket). The reactivity indicated that highly dispersed Cu2+ can be gradually transformed into active Cu2+ species during contact with methane. Bimetallic Cu-ZnOx was also able to activate methane, resulting in a product complex. Although Zndoped Cu-MOR catalysts gave a lower methanol yield at 2 h, a higher methanol yield could be achieved at saturation methane loading time. Interestingly, 3 wt% Zn doping on Cu-MOR showed superior activity due to the increase of methanol yield up to 20% at 5 h of methane loading time. This work paves the way for the design of highly dispersed Cu2+ in the 12-MR channel of mordenite zeolite via the control of strong Cu-ZnOx interaction.
[References]
  1. Sushkevich VL, Palagin D, Ranocchiari M, van Bokhoven JA, Science, 356, 523, 2017
  2. Elvidge C, Zhizhin M, Baugh K, Hsu FC, Ghosh T, Energies, 9, 14, 2015
  3. Lee SH, Kang JK, Park ED, Korean J. Chem. Eng., 35, 2145, 2018
  4. Tang P, Zhu Q, Wu Z, Ma D, Energy Environ. Sci., 7, 2580, 2014
  5. Ren M, Shi Q, Mi L, Liang W, Yuan M, Wang L, Gao Z, Huang W, Huang J, Zuo Z, Mater. Today Sustain., 11-12, 100061, 2021
  6. Balasubramanian R, Smith SM, Rawat S, Yatsunyk LA, Stemmler TL, Rosenzweig AC, Nature, 465, 115, 2010
  7. Merkx M, Kopp DA, Sazinsky MH, Blazyk JL, Müller J, Lippard SJ, Angew. Chem.-Int. Edit., 40, 2782, 2001
  8. Groothaert MH, Smeets PJ, Sels BF, Jacobs PA, Schoonheydt RA, J. Am. Chem. Soc., 127, 1394, 2005
  9. Alayon EM, Nachtegaal M, Ranocchiari M, Van Bokhoven JA, Chem. Commun., 48, 404, 2012
  10. Narsimhan K, Iyoki K, Dinh K, Román-Leshkov Y, ACS Cent. Sci., 2, 424, 2016
  11. Grundner S, Markovits MAC, Li G, Tromp M, Pidko EA, Hensen EJM, Jentys A, Sanchez-Sanchez M, Lercher JA, Nat. Commun., 6, 1, 2015
  12. Arvaneh R, Fard AA, Bazyari A, Alavi SM, Abnavi FJ, Korean J. Chem. Eng., 36, 1033, 2019
  13. Chotigkrai N, Hochin Y, Panpranot J, Praserthdam P, React. Kinet. Mech. Catal., 117, 565, 2016
  14. Tomkins P, Mansouri A, Sushkevich VL, Van der Wal LI, Bozbag SE, Krumeich F, Ranocchiari M, Van Bokhoven JA, Chem. Sci., 10, 167, 2019
  15. Geng H, Yang Z, Zhang L, Ran J, Yan Y, Energy Conv. Manag., 132, 339, 2017
  16. Zhao Y, Shan B, Wang Y, Zhou J, Wang S, Ma X, Ind. Eng. Chem. Res., 57, 4526, 2018
  17. Behrens M, Studt F, Kasatkin I, Kühl S, Hävecker M, Abild-Pedersen F, Zander S, Girgsdies F, Kurr P, Kniep BL, Tovar M, Science, 336, 893, 2012
  18. Qi W, Ling Q, Ding D, Yazhong C, Chengwu S, Peng C, Ye W, Qinghong Z, Rong L, Hao S, Catal. Commun., 108, 68, 2018
  19. Reule AAC, Semagina N, ACS Catal., 6, 4972, 2016
  20. Gabrienko AA, Arzumanov SS, Luzgin MV, Stepanov AG, Parmon VN, J. Phys. Chem. C, 119, 24910, 2015
  21. Le HV, Parishan S, Sagaltchik A, Göbel C, Schlesiger C, Malzer W, Trunschke A, Schomäcker R, Thomas A, ACS Catal., 7, 1403, 2017
  22. Zhou T, Li L, Jie C, Shen Q, Xie Q, Hao Z, Ceram. Int., 35, 3097, 2009
  23. Zhang D, Zhang H, Yan Y, Microporous Mesoporous Mater., 243, 193, 2017
  24. Gong T, Qin L, Lu J, Feng H, Phys. Chem. Chem. Phys., 18, 601, 2016
  25. Narsimhan K, Iyoki K, Dinh K, Román-Leshkov Y, ACS Cent. Sci., 2, 424, 2016
  26. Tamiyakul S, Ubolcharoen W, Tungasmita DN, Jongpatiwut S, Catal. Today, 256, 325, 2015
  27. Reule AAC, Shen J, Semagina N, ChemPhysChem, 19, 1500, 2018
  28. Sainz-Vidal A, Balmaseda J, Lartundo-Rojas L, Reguera E, Microporous Mesoporous Mater., 185, 113, 2014
  29. Vanelderen P, Vancauwenbergh J, Tsai ML, Hadt RG, Solomon EI, Schoonheydt RA, Sels BF, ChemPhysChem, 15, 91, 2014
  30. Reule AAC, Prasad V, Semagina N, Microporous Mesoporous Mater., 263, 220, 2018
  31. Fu Z, Yin D, Yang Y, Guo X, Appl. Catal. A: Gen., 124, 59, 1995
  32. Popov AG, Smirnov AV, Knyazeva EE, Yuschenko VV, Kalistratova EA, Klementiev KV, Grünert W, Ivanova II, Microporous Mesoporous Mater., 134, 124, 2010
  33. Lunkenbein T, Schumann J, Behrens M, Schlögl R, Willinger MG, Angew. Chem.-Int. Edit., 54, 4544, 2015
  34. Dalebout R, Visser NL, Pompe CEL, de Jong KP, de Jongh PE, J. Catal., 392, 150, 2020
  35. Liu Q, Zhao Z, Arai M, Zhang C, Liu K, Shi R, Wu P, Wang Z, Lin W, Cheng H, Zhao F, Catal. Sci. Technol., 10, 4412, 2020
  36. Artiglia L, Sushkevich VL, Palagin D, Knorpp AJ, Roy K, Van Bokhoven JA, ACS Catal., 9, 6728, 2019
  37. Niu X, Gao J, Miao Q, Dong M, Wang G, Fan W, Qin Z, Wang J, Microporous Mesoporous Mater., 197, 252, 2014
  38. Gabrienko AA, Arzumanov SS, Toktarev AV, Danilova IG, Prosvirin IP, Kriventsov VV, Zaikovskii VI, Freude D, Stepanov AG, ACS Catal., 7, 1818, 2017
  39. Newton MA, Knorpp AJ, Sushkevich VL, Palagin D, Van Bokhoven JA, Chem. Soc. Rev., 49, 1449, 2020
  40. Kulkarni AR, Zhao ZJ, Siahrostami S, Nørskov JK, Studt F, ACS Catal., 6, 6531, 2016
  41. Pappas DK, Martini A, Dyballa M, Kvande K, Teketel S, Lomachenko KA, Baran R, Glatzel P, Arstad B, Berlier G, J. Am. Chem. Soc., 140, 15270, 2018
  42. Ikuno T, Grundner S, Jentys A, Li G, Pidko E, Fulton J, Sanchez-Sanchez M, Lercher JA, J. Phys. Chem. C, 123, 8759, 2019
  43. Lomachenko KA, Martini A, Pappas DK, Negri C, Dyballa M, Berlier G, Bordiga S, Lamberti C, Olsbye U, Svelle S, Beato P, Catal. Today, 336, 99, 2019
  44. Alayon EMC, Nachtegaal M, Bodi A, Ranocchiari M, Van Bokhoven JA, Phys. Chem. Chem. Phys., 17, 7681, 2015
  45. Meyet J, Ashuiev A, Noh G, Newton MA, Klose D, Searles K, van Bavel AP, Horton AD, Jeschke G, van Bokhoven JA, Angew. Chem.-Int. Edit., 60, 16200, 2021
  46. Wang G, Huang L, Chen W, Zhou J, Zheng A, Phys. Chem. Chem. Phys., 20, 26522, 2018