Issue
Korean Journal of Chemical Engineering,
Vol.39, No.4, 876-886, 2022
Study on the performance of different discharging devices of a continuous production system
Based on the developed continuous production system of sodium phenol carboxylation reaction, several types of discharging devices are proposed, which are suitable for the case where the transported particles are not easy to maintain a stable state in the transported fluid. Numerical simulations of the gas-solid two-phase flow characteristics and particle distribution were performed with DPM, and the particle retention ratio and fluid loss degree were proposed to investigate the performance of the discharging devices. The results of simulations and industrial experiments showed that a guide plate installed in the “B” discharging device can solve the accumulation problem, realize the efficient and continuous delivery of the particles, and maintain a uniform distribution of particles. This study can provide a reference for the design of a gas-solid two-phase discharging device, and guide the industrial experimental operation and modification of continuous production systems for sodium phenol carboxylation.
[References]
  1. Devani Y, Yelamarthi PS, J. Food Process. Eng., 42, 2019
  2. Strenzke G, Dürr R, Bück A, Tsotsas E, Powder Technol., 375, 210, 2020
  3. Duan ZY, Sun SJ, Lan ZJ, Wang Y, Zhang JM, Wang JT, Powder Technol., 372, 428, 2020
  4. Geldart D, Powder Technol., 7, 285, 1973
  5. Jin Y, Lu HF, Guo XL, Gong X, Chem. Eng. Sci., 205, 319, 2019
  6. Tripathi NM, Santo N, Levy A, Kalman H, Powder Technol., 345, 190, 2019
  7. Sun D, Powder Technol., 390, 354, 2021
  8. Gomes LM, Mesquita ALA, Chem. Eng. Sci., 104, 780, 2013
  9. Matsumoto S, Kikuta M, Maeda S, J. Chem. Eng. Jpn., 10, 273, 1977
  10. Narimatsu CP, Ferreira MC, Brazil. J. Chem. Eng., 18, 221, 2001
  11. Heinl E, Bohnet M, Chem. Eng. Technol., 27, 1143, 2004
  12. Laín S, Sommerfeld M, Int. J. Multiph. Flow, 39, 105, 2012
  13. Chen XP, Fan CL, Liang C, Pu WH, Lu P, Korean J. Chem. Eng., 24, 499, 2007
  14. Liang C, Chen XP, Zhao CS, Pu WH, Lu P, Korean J. Chem. Eng., 26, 867, 2009
  15. Liu B, Wu ZD, Yin GC, Liu JX, Mod. Manuf. Eng., 03, 93, 2018
  16. Orozovic O, Lavrinec A, Alkassar Y, Chen J, Williams K, Jones MG, Klinzing GE, Powder Technol., 364, 218, 2020
  17. Wang YF, Heibei Univ. Technol. (2018).
  18. Hong WP, Wang BH, Liu Y, Li HR, Powder Technol., 375, 233, 2020
  19. Sharma K, Mallick SS, Mittal A, Powder Technol., 362, 707, 2020
  20. Yang Y, Zhang P, He LL, Sun JY, Huang ZL, Wang JD, Yang YR, Chem. Eng. Sci., 211, 115260, 2020
  21. Zhang P, Yang Y, Huang ZL, Sun ZY, Liao ZW, Wang JD, Yang YR, Chem. Eng. Sci., 229, 116083, 2020
  22. Xiong YJ, Guo XL, Gong X, Huang WJ, Zhao JC, Lu HF, CIESC J., 60, 1421, 2009
  23. Zhou JW, Han XM, Jing SX, Liu Y, Chem. Eng. Res. Des., 157, 92, 2020
  24. Bansal A, Mallick SS, Wypych PW, Part. Sci. Technol., 31, 348, 2013
  25. Li H, Tomita Y, Powder Technol., 107, 144, 2000
  26. Holmas H, Chem. Eng. Sci., 65, 1811, 2010
  27. Hadziahmetovic H, Hodzic N, Kahrimanovic D, Dzaferovic E, Teh. Vjesn., 21, 275, 2014