Issue
Korean Journal of Chemical Engineering,
Vol.39, No.5, 1324-1332, 2022
Synthesis of a fluorescence sensor based on carbon quantum dots for detection of bisphenol A in aqueous solution
In order to detect bisphenol A (BPA), one of representative endocrine disrupting chemicals (EDCs), in aqueous solution, a carbon quantum dot (CQD) was prepared using 1,3,6-trinitropyrene as a precursor by a hydrothermal synthesis method. STEM, Raman spectroscopy, FT-IR, and XPS were used for the characterization of the purified CQD (p-CD) in this work. The prepared material had a size of about 5 nm, contained many hydroxyl functional groups, and was found to have an amorphous graphene structure. In the concentration range used in this work (0 µM to 0.5 µM), p-CD showed a tendency to increase in fluorescence intensity with high linearity (R2=0.99749) as the BPA aqueous solution concentration increased. By measuring and comparing the fluorescence excitation wavelength of p-CD and the fluorescence emission wavelength of BPA, it was found that this fluorescence change occurred by the Forster resonance energy transfer (FRET) mechanism. Fluorescence experiments were also performed using benzoic acid, hydroquinone, and naphthalene, which have similar molecular structure to BPA as comparative materials. The p-CD exhibited high selectivity for BPA detection while exhibiting a 5-fold greater change in fluorescence intensity for BPA than other target substances.
[References]
  1. Bhatnagar A, Anastopoulos I, Chemosphere, 168, 885, 2017
  2. Yoo J, Na J, Jung J, Ecol. Resil. Infrastruct., 6(2), 128, 2019
  3. Grignon C, Venisse N, Rouillon S, Brunet B, Bacle A, Thevenot S, Migeot V, Dupuis A, Anal. Bioanal. Chem., 408(9), 2255, 2016
  4. Chang HS, Choo KH, Lee B, Choi SJ, J. Hazard. Mater., 172(1), 1, 2009
  5. Xue F, Wu J, Chu H, Mei Z, Ye Y, Liu J, Zhang R, Peng C, Zheng L, Chen W, Microchim. Acta, 180, 109, 2013
  6. Lu Y, Doan L, Bafana A, Yu G, Jeffryes C, Benson T, Wei S, Wujcik EK, in Polymer-based multifunctional nanocomposites and their applications, Song K, Liu C, Guo JZ (Ed.), Elsevier, Amsterdam (2019).
  7. Liu ML, Chen BB, Li CM, Huang CZ, Green Chem., 21(3), 449, 2019
  8. Wilner MR, Viksland PJ, J. Nanobiotechnol., 16(1), 1, 2018
  9. Koutsioukis A, Akouros A, Zboril R, Georgakilas V, Nanoscale, 10(24), 11293, 2018
  10. Das GS, Shim JP, Bhatnagar A, Tripathi KM, Kim T, Sci. Rep., 9(1), 1, 2019
  11. Yoo D, Park Y, Cheon B, Park M, Nanoscale Res. Lett., 14(1), 1, 2019
  12. Zhang X, Jiang M, Niu N, Chen Z, Li S, Liu S, Li J, ChemSusChem, 11(1), 11, 2018
  13. Yang H, He L, Pan S, Liu H, Hu X, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 210, 111, 2019
  14. Yan Y, Liu JH, Li RS, Li YF, Huang CZ, Zhen SJ, Anal. Chim. Acta, 1063, 144, 2019
  15. Xu H, Yang X, Li G, Zhao C, Liao X, J. Agric. Food Chem., 63(30), 6707, 2015
  16. Ghereghlou M, Esmaeili AA, Darroudi M, J. Fluoresc., 31(1), 185, 2021
  17. Xue M, Zou M, Zhao J, Zhan Z, Zhao S, J. Mater. Chem. B, 3(33), 6783, 2015
  18. Wang Q, Liu X, Zhang L, Lv Y, Analyst, 137(22), 5392, 2012
  19. Nsibande SA, Forbes PBC, RSC Adv., 10(21), 12119, 2020
  20. Chan KK, Yap SHK, Yong KT, Nano-Micro Lett., 10(4), 1, 2018
  21. Yan F, Sun Z, Zhang H, Sun X, Jiang Y, Bai Z, Microchim. Acta, 186(8), 1, 2019
  22. Zu F, Yan F, Bai Z, Xu J, Wang Y, Huang Y, Zhou X, Microchim. Acta, 184(7), 1899, 2017
  23. Wang L, Cao HX, Pan CG, He YS, Liu HF, Zhou LH, Li CQ, Liang GX, Microchim. Acta, 186(1), 1, 2019
  24. Liu G, Chen Z, Jiang X, Feng DQ, Zhao J, Fan D, Wang W, Sens. Actuators B-Chem., 228, 302, 2016
  25. Zhao D, Liu X, Wei C, Qu Y, Xiao X, Cheng H, RSC Adv., 9(51), 29533, 2019
  26. Wang L, Wang Y, Xu T, Liao H, Yao C, Liu Y, Li Z, Chen Z, Pan D, Sun L, Wu M, Nat. Commun., 5, 1, 2014
  27. Kaplan S, Org. Mag. Res., 15(2), 197, 1981
  28. Cosme JRA, Bryant HE, Claeyssens F, PloS One, 14(7), e0220210, 2019
  29. Chandra S, Pradhan S, Mitra S, Patra P, Bhattacharya A, Pramanik P, Goswami A, Nanoscale, 6(7), 3647, 2014
  30. Costa RSD, Cunha WFD, Pereira NS, Ceschin AM, Materials, 11(9), 1492, 2018
  31. Hinterberger V, Damm C, Haines P, Guldi DM, Peukert W, Nanoscale, 11(17), 8464, 2019
  32. Pudza MY, Abidin ZZ, Rashid SA, Yasin FM, Noor ASM, Issa MA, Nanomaterials, 10(2), 315, 2020
  33. Wang W, Li Y, Cheng L, Cao Z, Liu W, J. Mater. Chem. B, 2(1), 46, 2014
  34. Reckmeier C, Schneider J, Susha A, Rogach A, Opt. Express, 24(2), A312, 2016
  35. Yan Z, Barron AR, in Nanomaterials and nanotechnology, Barron AR (Ed.), OpenStax CNX, Texas (2015).
  36. Araujo RED, Dominguez CT, in Quantum dots, Fontes A, Santos B (Ed.), Humana, New York (2020).
  37. Brouwer AM, Pure Appl. Chem., 83(12), 2213, 2011
  38. Wu L, Huang C, Emery B, Sedgwick AC, Bull SD, He XP, Tian H, Yoon J, Sessler JL, James TD, Chem. Soc. Rev., 49(15), 5110, 2020
  39. Xu J, Wang L, Zhu Y, Langmuir, 28(22), 8418, 2012