Issue
Korean Journal of Chemical Engineering,
Vol.39, No.5, 1146-1157, 2022
Effect of baffle configuration on performance of batch stirred vessel
Crystallization is often carried out in batch stirred vessels. However, it is difficult to obtain uniform crystal size distribution (CSD), as it strongly depends on prevailing flow field operating conditions. This is adversely affected by the geometry of stirred vessels. Hence in this work, CFD simulations were performed to investigate flow field, mixing and crystallization phenomena in a stirred vessel. The performance of the stirred vessel was compared with draft tube baffled stirred vessel. The flow field was quantified through liquid circulation and vorticity. The mixing was analyzed through macromixing time in the stirred vessel. The solubility data, nucleation, and growth kinetics were integrated with CFD through a user-defined function (UDF) to predict crystallization phenomena. The predicted results were validated with experimental data available in the literature. The effects of seed mass, size and temperature on CSD were investigated and optimum conditions [750 gm (seed mass); 500 μm (seed size); 308 K (temperature)] for favourable crystal growth were identified. The performance of the proposed baffled stirred vessel was found to be significant, and it supports enhancing flow field, mixing and crystallization process.
[References]
  1. Su Q, Nagy ZK, Rielly CD, Chem. Eng. Process., 89, 41, 2015
  2. Gao Z, Rohani S, Gong J, Wang J, Engineering, 3, 343, 2017
  3. Ali H, Solsvik J, Phys. Fluids, 33, 033319, 2021
  4. Mendoza-Escamilla VX, Alonzo-García A, Mollinedo HR, González-Neria I, Yáñez-Varela JA, Martinez-Delgadillo SA, Chin. J. Chem. Eng., 26, 942, 2018
  5. Steiros K, Bruce PJK, Buxton ORH, Vassilicos JC, Springer Proc. in Phys., 363 (2016).
  6. Paul EL, Midler M, Sun Y, Handb. Ind. Mix., 1027, 2004
  7. Başbuğ S, Papadakis G, Vassilicos JC, Phys. Rev. Fluids, 3, 084502, 2018
  8. Yoon HS, Balachandar S, Ha MY, Phys. Fluids, 21, 085102, 2009
  9. Steiros K, Bruce PJK, Buxton ORH, Vassilicos JC, Phys. Rev. Fluids, 2, 094802, 2017
  10. Wendt JF, Anderson JD, Degroote J, Degrez G, Dick E, Grundmann R, Vierendeels J, Computational fluid dynamics: An introduction, Springer Sci, & Business Media (2008).
  11. Li X, Zhao H, Zhang Z, Liu Y, Zhang T, Chin. J. Chem. Eng., 29, 57, 2021
  12. Pukkella AK, Vysyaraju R, Tammishetti V, Rai B, Subramanian S, Chem. Eng. J., 358, 621, 2019
  13. Wang L, Tian Y, Qi Y, Gao Y, Wang M, Particuology, 56, 91, 2021
  14. Joshi JB, Nere NK, Rane CV, Murthy BN, Mathpati CS, Patwardhan AW, Ranade VV, Can. J. Chem. Eng., 89, 754, 2011
  15. Vedantam S, Ranade VV, Sadhana - Acad. Proc. Eng. Sci., 38, 1287, 2013
  16. Hara S, Ebihara S, Kawaguchi Y, Phys. Fluids, 32, 075102, 2020
  17. Sulttan S, Rohani S, J. Cryst. Growth, 505, 19, 2019
  18. Szilágyi B, Nagy ZK, Cryst. Growth Des., 18, 1415, 2018
  19. de Souza LM, Temmel E, Janiga G, Seidel-Morgenstern A, Thévenin D, Chem. Eng. Sci., 232, 116344, 2021
  20. Rohani S, Horne S, Murthy K, Org. Process Res. Dev., 9, 858, 2005
  21. Temmel E, Eicke M, Lorenz H, Seidel-Morgenstern A, Cryst. Growth Des., 16, 6756, 2016
  22. Green D, Handb. Ind. Cryst., 181, 2002
  23. Doki N, Kubota N, Sato A, Yokota M, Hamada O, Masumi F, AIChE J., 45, 2527, 1999
  24. Lenka M, Sarkar D, J. Cryst. Growth, 486, 130, 2018
  25. Doki N, Kubota N, Yokota M, Chianese A, J. Chem. Eng. Jpn., 35, 670, 2002
  26. Bohlin M, Rasmuson AC, Can. J. Chem. Eng., 70, 120, 1992
  27. Doki N, Kubota N, Sato A, Yokota M, Chem. Eng. J., 81, 313, 2001
  28. Wei H, Zhou W, Garside J, Ind. Eng. Chem. Res., 40, 5255, 2001
  29. Wang Z, Mao Z, Yang C, Shen X, Chin. J. Chem. Eng., 14, 713, 2006
  30. Trampuž M, Teslić D, Likozar B, Chem. Eng. Res. Des., 165, 254, 2021
  31. Green DA, Handb. Ind. Cryst., 290, 2019
  32. Kumaresan T, Joshi JB, Chem. Eng. J., 115, 173, 2006
  33. Ali BA, Janiga G, Temmel E, Seidel-Morgenstern A, Thévenin D, J. Cryst. Growth, 372, 219, 2013
  34. Temmel E, Eisenschmidt H, Lorenz H, Sundmacher K, Seidel-Morgenstern A, Cryst. Growth Des., 16, 6743, 2016
  35. Lewis A, Seckler M, Kramer H, Van Rosmalen G, Industrial Crystallization: Fundamentals and Applications (Cambridge University Press, 2015).
  36. Domínguez-Vázquez D, Jacobs GB, Tartakovsky DM, Phys. Fluids, 33, 033326, 2021
  37. Galletti C, Paglianti A, Lee KC, Yianneskis M, AIChE J., 50, 2050, 2004
  38. Ding J, Gidaspow D, AIChE J., 36, 523, 1990
  39. Mersmann A, Crystallization technology handbook, CRC press, Florida (2001).
  40. McGraw R, Aerosol Sci. Technol., 27, 255, 1997
  41. Hemalatha K, Rani KY, Ind. Eng. Chem. Res., 56, 6012, 2017
  42. John V, Angelov I, Öncül AA, Thévenin D, Chem. Eng. Sci., 62, 2890, 2007
  43. Fox RW, Pritchard PJ, Mcdonald AT, Introduction to fluid mechanics, 7Th Ed., Wiley India Pvt. Limited (2009).
  44. Marshall EM, Bakker A, Handb. Ind. Mix., 257, 2001
  45. Ali BA, Börner M, Peglow M, Janiga G, Seidel-Morgenstern A, Thévenin D, Cryst. Growth Des., 15, 145, 2015