Issue
Korean Journal of Chemical Engineering,
Vol.39, No.6, 1604-1613, 2022
In situ soft templated synthesis of polyfluorene-molybdenum oxide (PF-MoO3) nanocomposite: A nanostructure glucose sensor
A polyfluorene-molybdenum oxide nanocomposite (PF-MoO3) was successfully prepared in swollen liquid crystalline (SLC) lamellar phase. The morphology, shape, and structure of the nanocomposite are characterized by field emission scanning electron microscopy (FESEM), X-ray powder diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The obtained PF-MoO3 material was loaded over a glassy carbon electrode (GCE). The PF-MoO3/GCE was employed as a working electrode for the detection of glucose by differential pulse voltammetry (DPV) and cyclic voltammetry (CV) techniques. The determined limits of detection (LOD) and the limits of quantification (LOQ) from CV were 7.90×10-5 M and 2.63×10-5 M, respectively. The calculated sensitivity of the PF-MoO3 electrode material for glucose was estimated to be 4.29×104 µA L mol-1 cm-2. The values of LOD and LOQ obtained from DPV data were 7.05×10-5 M and 2.35×10-5 M, respectively. The results were in agreement with CV observations. Similarly, the glucose sensitivity for the PF-MoO3/GCE by DPV technique was 5.18×103 µA L mol-1 cm-2. In this research, we have developed a highly sensitive glucose sensor by modification of the GCE electrode surface with PF-MoO3 nanocomposite.
[References]
  1. Zhang Y, Ma Y, Li Y, Zhu W, Wei Z, Sun J, Li T, Wang J, Appl. Surf. Sci., 505, 144636, 2020
  2. Christwardana M, Ji J, Chung Y, Kwon Y, Korean J. Chem. Eng., 34, 2916, 2017
  3. Wang G, He X, Wang L, Gu A, Huang Y, Fang B, Geng B, Zhang X, Microchim. Acta, 180, 161, 2013
  4. Li M, Liu L, Xiong Y, Liu X, Nsabimana A, Bo X, Guo L, Sens. Actuators B-Chem., 207, 614, 2015
  5. Toghill KE, Compton RG, Int. J. Electrochem. Sci., 5, 1246, 2010
  6. Zhu ZG, Garcia-Gancedo L, Flewitt AJ, Xie HQ, Moussy F, Milne WI, Sensors, 12, 5996, 2012
  7. Pumera M, Loo A, Trends Anal. Chem., 61, 49, 2014
  8. Balendhran S, Walia S, Nili H, Ou J, Zhuiykov S, Kaner RB, Sriram S, Bhaskaran M, Kalantar-zadeh K, Adv. Funct. Mater., 23, 3952, 2013
  9. Reddy VM, Sravani B, Łuczak T, Mallikarjunad K, Madhavi G, Colloids Surf. A: Physicochem. Eng. Asp., 608, 125533, 2021
  10. Zhang L, Li H, Ni Y, Li J, Liao K, Zhao G, Electrochem. Commun., 11, 812, 2009
  11. Xue Y, Tian B, Wang M, Zhai T, Li R, Tan L, Colloids Surf. A: Physicochem. Eng. Asp., 591, 124549, 2020
  12. Meng F, Shi W, Sun Y, Zhu X, Wua G, Ruan C, Liu X, Ge D, Biosens. Bioelectron., 42, 141, 2013
  13. Azharudeen AM, Karthiga R, Rajarajan M, Suganthi A, Microchem J., 157, 105006, 2020
  14. Shakir I, Sarfraz M, Electrochim. Acta, 147, 380, 2014
  15. Wang Y, Zhu Y, Xing Z, Qian Y, Int. J. Electrochem. Sci., 8, 9851, 2013
  16. Murugesan D, Moulaee K, Neri G, Ponpandian N, Viswanathan C, Nanotechnology, 30, 265501, 2019
  17. Lei W, Si W, Xu Y, Gu Z, Hao Q, Microchim. Acta, 181, 707, 2014
  18. Li L, Qiu H, Wang Y, Jiang J, Xu F, J. Rare Earths, 26, 558, 2008
  19. Mort J, Science, 208, 819, 1980
  20. Zhang L, Yuan S, Lu X, Microchim. Acta, 181, 365, 2014
  21. Xie J, Yang X, Zhou S, Wang D, ACS Nano., 5, 9225, 2011
  22. Mehdinia A, Khani H, Mozaffari S, Microchim. Acta, 181, 89, 2014
  23. Mostafaei A, Nasirpouri F, Prog. Org. Coat., 77, 146, 2014
  24. Jiang F, Li W, Zou R, Liu Q, Xu K, An L, Hu J, Nano Energy, 7, 72, 2014
  25. Li S, Wu D, Cheng C, Wang J, Zhang F, Su Y, Feng X, Angew. Chem.-Int. Edit., 52, 12105, 2013
  26. Neher D, Macromol. Rapid Commun., 22, 1365, 2001
  27. Scherf U, List EJW, Adv. Mater., 14, 477, 2002
  28. Surendran G, Tokumoto M, dos Santos EP, Remita H, Ramos L, Kooyman P, Prouzet J, Chem. Mater., 17, 1505, 2005
  29. Tawade A, Kumar DM, Talele P, Sharma KK, Tayade S, J. Electron. Mater., 48, 7747, 2019
  30. Chithambararaj A, Bose A, J. Nanotechnol., 2, 585, 2011
  31. Aljabali A, Barclay J, George J, Lomonossoffa B, Evans P, Dalton Trans., 39, 7569, 2010
  32. Zakharova GS, Schmidt C, Ottmann A, Mijowska E, Klingeler R, J. Solid State Electrochem., 22, 3651, 2018
  33. Farial G, Plivelic T, Cossiello R, Multitechnique A, J. Phys. Chem. B, 113, 11403, 2009
  34. Jumali M, Al-Asbahi B, Yap C, Salleh M, Alsalhi M, Thin Solid Films, 524, 257, 2012
  35. Mika T, Frank G, Ullrich S, Macromolecules, 48, 5244, 2015
  36. Sims M, Bradely DDC, Ariu M, Koeberg M, Asimakis A, Grell M, Lidzey DG, Adv. Funct. Mater., 14, 765, 2004
  37. Li K, Pan J, Feng S, Wenqing A, Pu K, Liu Y, Liu B, Adv. Funct. Mater., 19, 3535, 2009
  38. Dhanavel SE, Nivethaa AK, Dhanapal K, Gupta VK, Narayanan V, Stephena A, RSC Adv., 6, 28871, 2016
  39. Rozenberg BA, Tenne R, Prog. Polym. Sci, 33, 40, 2008
  40. Chithambararaj A, Bose A, J. Alloy. Compd., 509, 8105, 2011
  41. Zhao W, Cao T, White JM, Adv. Funct. Mater., 14, 783, 2004
  42. Marimuthu T, Mohamad S, Alias Y, Synth. Met., 207, 35, 2015
  43. Kamble B, Naikwade M, Garadkar K, Mane R, Sharma K, Ajalkar B, Tayade S, J. Mater. Sci. -Mater. Electron., 30, 13984, 2019
  44. Li X, Du X, Sens. Actuators B-Chem., 239, 536, 2017
  45. Anderson K, Poulter B, Dudgeon J, Li SE, Ma X, Sensors, 17, 1807, 2017
  46. Azharudeen AM, Karthiga R, Rajarajan M, Suganthi A, Microchem J., 157, 105006, 2020
  47. Sharma M, Gangan A, Chakraborty B, Rout CS, J. Phys. D-Appl. Phys., 50, 475401, 2017
  48. Zhai YJ, Li JH, Chu XY, Xu MZ, Jin FJ, Li X, Fang X, Wei ZP, Wang XH, J. Alloy. Compd., 672, 600, 2016
  49. Kannan P, Chen F, Jiang H, Wang H, Wang R, Subramanian P, Ji S, Analyst, 144, 4925, 2019
  50. Ren H, Yan L, Liu M, Wang Y, Liu X, Liu C, Liu K, Zeng L, Liu A, Sens. Actuators B-Chem., 296, 126517, 2019
  51. Fang L, Wang F, Chen Z, Qiu Y, Zhai T, Hu M, Zhang C, Huang K, Talanta, 167, 593, 2017
  52. Zhang Z, Vieira D, Barralet JE, Merle G, 2D Mater., 7, 025044, 2014
  53. Shahnavaz Z, Lorestani F, Alias Y, Woi PM, Appl. Surf. Sci., 317, 622, 2014
  54. Lyons M, Keeley GP, Chem. Commun., 22, 2529, 2008
  55. Hui N, Wang S, Xie H, Xu S, Niu S, Luo X, Sens. Actuators B-Chem., 221, 606, 2015
  56. Kumar AS, Chen PY, Chien SH, Zen JM, Electroanalysis, 3, 17, 2005
  57. Park S, Boo H, Dong T, Anal. Chim. Acta, 556, 46, 2006
  58. Largeaud F, Kokoh KB, Beden B, Lamy CJ, Electroanal. Chem., 397, 261, 1995
  59. Ernst S, Heitbaum J, Hamann CH, Bunsenges B, Phys. Chem., 84, 50, 1980
  60. Hareesha N, Manjunatha JG, J. Iran Chem. Soc., 17, 1507, 2020
  61. Bard A, Faulkner L, Electrochemical methods: fundamentals and applications, 2nd Edition, John Wiley, New York (2001).
  62. Kamble BB, Tawade AK, Kamble P, Padavi MN, Sharma KK, Ajalkar BD, Tayade SN, Russian J. Electrochem., 56, 766, 2020
  63. Raziq A, Tariq M, Hussian R, Mehmood M, Khan MS, Hassan A, Chem. Select., 2, 9711, 2017
  64. Kamble BB, Ajalkar BD, Tawade AK, Sharma KK, Mali SS, Hong CK, Bathula C, Kadam AN, Tayade SN, J. Mol. Liq., 324, 115119, 2021
  65. Mukherjee P, Roy PS, Bhattacharya SK, Int. J. Hydrog. Energy, 40, 13357, 2015