Issue
Korean Journal of Chemical Engineering,
Vol.39, No.9, 2505-2512, 2022
Powder X-ray diffraction analysis of Cu/Cu2O nanocomposites synthesized by colloidal solution method
Cu/Cu2O powder nanocomposites (PNCs) were successfully synthesized by colloidal solution method. To investigate the influence of oxidant agent concentration on the crystallite size and lattice constant of the PNCs, X-ray diffraction (XRD) was utilized to collect the database for crystal growth analysis. Due to the imperfect crystal growth, the Nelson-Riley function and the Williamson-Hall method were used to confirm the precise values of the PNCs. The Rietveld refinement method based on the XRD pattern was used. The XRD results show that the diffraction peaks were mainly assigned to the cubic structure, in good agreement with the ICDD standards. Furthermore, the change in oxidant agent concentration led to a very small change of microstrain in the peaks of Cu/Cu2O PNCs. Using these methods can aid in the precise study of the crystalline structure of the material, which can then be calculated to adjust the influencing conditions during the synthesis of the material.
[References]
  1. Bak T, Nowotny J, Sucher NJ, Wachsman ED, Adv. Appl. Ceram., 111, 4, 2012
  2. Melo MMM, Rocha EMR, Silva EL, Manag. Environ. Qual., 28, 65, 2018
  3. Al-Hamdi AM, Rinner U, Sillanpaa M, Process Saf. Environ. Protect., 107, 190, 2017
  4. Gueymard CA, Sol. Energy, 76, 423, 2004
  5. Li J, Liu X, Sun Z, Pan L, J. Colloid Interface Sci., 463, 145, 2016
  6. Liu B, Liu X, Ni M, Feng C, Lei X, Li C, Gong Y, Niu L, Li J, Pan L, Appl. Surf. Sci., 453, 280, 2018
  7. Luo J, Steier L, Son MK, Schreier M, Mayer MT, Graatzel M, Nano Lett., 16, 1848, 2016
  8. Bagal IV, Chodankar NR, Hassan MA, Waseem A, Johar MA, Kim DH, Ryu SW, Int. J. Hydrog. Energy, 44, 21351, 2019
  9. Xu L, Srinivasakannan C, Peng J, Yan M, Zhang D, Zhang L, Appl. Surf. Sci., 331, 449, 2015
  10. Zhou B, Liu Z, Wang H, Yang Y, Su W, Catal. Lett., 132, 75, 2009
  11. Kou T, Wang Y, Zhang C, Sun J, Zhang Z, Chem. Eng. J., 223, 76, 2013
  12. Cao H, Huang S, Yu Y, Yan Y, Lu Y, Cao Y, J. Colloid Interface Sci., 486, 176, 2017
  13. Khaki MRD, Shafeeyan MS, Raman AAA, Daud WMAW, J. Mol. Liq., 258, 354, 2018
  14. Chen S, Liu F, Xu M, Yan J, Zhang F, Zhao W, Zhang Z, Deng Z, Yun J, Chen R, Liu C, J. Colloid Interface Sci., 553, 613, 2019
  15. Yuan B, Liu X, Fu H, Liu J, Zhu Q, Wu M, Sol. Energy, 188, 265, 2019
  16. Wang B, Xie Y, Yang T, Wang L, Wang L, Jin D, Surf. Eng., 36, 199, 2020
  17. Behjati S, Sheibani S, Herritsch J, Gottfried JM, Mater. Res. Bull., 130, 110920, 2020
  18. Xu C, Manukyan KV, Adams RA, Pol VG, Chen P, Varma A, Carbon, 142, 51, 2019
  19. Ahmed A, Gajbhiye NS, Joshi AG, Mater. Chem. Phys., 129, 740, 2011
  20. Oskam G, J. Sol-Gel Sci. Technol., 37, 161, 2006
  21. Ferreira DL, Sousa JCL, Maronesi RN, Bettini J, Schiavon MA, Teixeira AV, Silva AG, J. Chem. Phys., 147, 154102, 2017
  22. Shi Y, Lian J, Hu W, Liu Y, He G, Jin K, Song H, Dai K, Fang J, J. Alloy. Compd., 788, 891, 2019
  23. Taglieri G, Mondelli C, Daniele V, Pusceddu E, Trapananti A, AMPC, 3, 108, 2013
  24. Chauhan A, Chauhan P, J. Anal. Bioanal. Tech., 5, 1, 2014
  25. Dey PC, Sarkar S, Das R, Mater. Sci. Pol., 38, 271, 2020
  26. Pandya SG, Corbett JP, Jadwisienczak WM, Kordesch ME, Phys. E: Low-Dimens. Syst. Nanostructures, 79, 98, 2016
  27. Kumar B, Saha S, Ojha K, Ganguli AK, Mater. Res. Bull., 64, 283, 2015
  28. Dang TMD, Le TTT, Blanc EF, Dang MC, Adv. Nat. Sci: Nanosci. Nanotechnol., 2, 015009, 2011
  29. Shameli K, Ahmad MB, Zamanian A, Sangpour P, Shabanzadeh P, Abdollahi Y, Zargar M, Int. J. Nanomedicine, 7, 5603, 2012
  30. Bai Y, Yang T, Gu Q, Cheng G, Zheng R, Powder Technol., 227, 35, 2012
  31. Xiong L, Xiao H, Chen S, Chen Z, Yi X, Wen S, Zheng G, Ding Y, Yu H, RSC Adv., 4, 62115, 2014
  32. Eslami M, Golestani-fard F, Saghafian H, Robin A, Mater. Des., 58, 557, 2014
  33. Dong Y, Wang K, Tan Y, Wang Q, Li J, Mark H, Zhang S, Nanoscale Res. Lett., 13, 1, 2018
  34. He Q, Tian Y, Wu Y, Liu J, Li G, Deng P, Chen D, Biomacromolecules, 9, 176, 2019
  35. Chintala JPK, Kaushik SD, Varma MC, Choudary GSVRK, Rao KH, J. Supercond. Nov. Magn., 34, 149, 2021
  36. Khemiri N, Abdelkader D, Khalfallah B, Kanzari M, OJSTA, 2, 33, 2013
  37. Mallik M, Monia S, Gupta M, Ghosh A, Toppo MP, Roy H, J. Alloy. Compd., 829, 154623, 2020
  38. Akl AA, Mahmoud SA, Al-Shomar SM, Hassanien AS, Mater. Sci. Semicond. Process, 74, 183, 2018
  39. Terohid SAA, Heidari S, Jafari A, Asgary S, Appl. Phys. A-Mater. Sci. Process., 124, 1, 2018
  40. Shim W, Ham J, Lee KI, Jeung WY, Johnson M, Lee W, Nano Lett., 9, 18, 2009
  41. Sutapa IW, Wahab AW, Taba P, Nafie NL, J. Phys. Conf. Ser., 979, 012021, 2018