Issue
Korean Journal of Chemical Engineering,
Vol.39, No.6, 1614-1623, 2022
Structural and thermal properties of the Fe-based alloys prepared by mechanical milling
Nanocrystalline FeCoNi and FeCoNiSi powdered alloys were prepared by mechanical milling process (MA). Using X-ray diffraction patterns, we experimentally proved that when MA reached a time of 50 h, it led to a decrease of the crystallite size down to 20 nm and 32 nm for FeCoNiSi and FeCoNi, respectively. However, the dislocation density increased, reaching the highest value for the alloy associated with silicon. Nevertheless, this high energy ball-milling process is not used only for the refining of microstructure, but also to induce either a chemical reaction between the powdered chemical elements or a phase transformation, such as the allotropic transformation of HCP-Co to FCC-Co and the formation of highly disordered Fe-based solid solutions. Thermal stability of the milled mixtures was investigated by DSC from 25 up to 700℃ at a heating rate of 10℃/min. Various milled samples were first annealed at specific temperatures and then analyzed using X-ray diffraction, which demonstrated the stability of the evolved phases during subsequent heating and the formation of some metallic oxides, such as Fe3O4, Fe2O3 and FeO, particularly for the elevated annealing temperatures.
[References]
  1. Prasad NK, Kumar V, J. Mater. Sci. -Mater. Elect., 26, 10109, 2015
  2. Raanaei H, Eskandari H, Mohammad HV, J. Magn. Magn. Mater., 398, 190, 2016
  3. Zeleňáková A, Olekšáková D, Degmová J, Kováč J, Kollár P, Kusý M, Sovák P, J. Magn. Magn. Mater., 316, e519, 2007
  4. Suryanarayana C, Prog. Mater. Sci., 46, 1, 2001
  5. Jartych E, J. Magn. Magn. Mater., 323, 209, 2011
  6. Pikula T, Oleszak D, Pękała M, Jartych E, J. Magn. Magn. Mater., 320, 413, 2008
  7. Mocolvin GM, Shaw MJ, Mater. Sci. Forum, 88, 235, 1992
  8. Schaffer GB, McCormick PG, Appl. Phys. Lett., 1, 45, 1988
  9. Avar B, Ozcan S, J. Alloy. Compd., 650, 53, 2015
  10. Suryanarayana C, Int. Mater. Rev., 40, 41, 1995
  11. Suryanarayana C, Prog. Mater. Sci., 46, 1, 2001
  12. Kasaai MR, J. Nanotechnol., 4, 1, 2015
  13. Poland CA, Larsen PB, Read SAK, Varet J, Hankin SM, Lam HR, D.E.P.A: Copenhagen, Denmark, 23 (2016).
  14. Santos AC, Morais F, Simões A, Pereira I, Sequeira JAD, Pereira-Silva M, Veiga F, Ribeiro A, Expert Opin. Drug Deliv., 16, 313, 2019
  15. Jiles D, Introduction to magnetism and magnetic materials, Chapman and Hall/CRC Press: New York, NY, USA (1998).
  16. Raanaei H, Eskandari H, Mohammad-Hosseini V, J. Magn. Magn. Mater., 398, 190, 2016
  17. Li X, Takahashi S, J. Magn. Magn. Mater., 214, 195, 2000
  18. Tianlong QI, Yanhui LI, Takeuchi A, Guoqiang X, Miao H, Zhang W, Intermetallics, 66, 8, 2015
  19. Li Y, Zhang W, Qi T, J. Alloy. Compd., 693, 25, 2017
  20. Wei R, Sun H, Chen C, Han Z, Li F, J. Magn. Magn. Mater., 435, 184, 2017
  21. Petrisek V, Jana DM, The Crystallographic Computing System (Institute of Physics), Prague (2000).
  22. Owen EA, Jones DM, University College of North Wales, Bangor MS (1954).
  23. Novák P, Zelinková M, Šerák J, Michalcová A, Novák M, Vojtěch D, Intermetallics, 19, 1306, 2011
  24. Williamson GK, Hall WH, Acta Metall., 1, 22, 1953
  25. Zhao Y, Sheng H, Lu K, Acta Mater., 49, 365, 2001
  26. Rafailović LD, Minić DM, Chem. Ind., 63, 557, 2009
  27. Mondal BN, Basumallick A, Nath DN, Chattopadhyay PP, Mater. Chem. Phys., 116, 358, 2009
  28. Bruce D, Hancock P, Br. Corros. J., 4, 221, 1969