Issue
Korean Journal of Chemical Engineering,
Vol.39, No.4, 811-820, 2022
New frontiers of quantum computing in chemical engineering
Quantum computing (QC) has the potential to strongly impact various sectors like finance, healthcare, communication, and technology by driving innovation across optimization and machine learning. Applications of QC in chemical, pharmaceutical, and biomolecular industries are also predicted to grow rapidly in the near future. Advancements in quantum hardware and algorithms have helped accelerate the widespread adoption of QC. Yet, despite the progress, several research gaps and challenges need to be addressed before leveraging QC for chemical engineering applications. Quantum computers offer higher computational power due to the exploitation of their quantum mechanical properties. However, not all computationally intractable problems can benefit from QC’s computational abilities. Achieving speedups over classical computing with quantum algorithms implemented on current quantum devices is possible for a few specific tasks. It is imperative to identify chemical engineering problems of practical relevance that may benefit from novel quantum techniques either with current quantum computers or of the future. Here, we present an introduction to basic concepts of QC while identifying the limitations of current quantum computers. A review of quantum algorithms that may benefit optimization and machine learning in chemical engineering with current quantum computers is also provided. This work also sets expectations for quantum devices of the future by exploring similar applications that may benefit from quantum algorithms implemented on such devices.
[References]
  1. Nielsen MA, Chuang I, Quantum computation and quantum information, American Association of Physics Teachers (2002).
  2. Friis N, Marty O, Maier C, Hempel C, Holzäpfel M, Jurcevic P, Plenio MB, Huber M, Roos C, Blatt R, Lanyon B, Phys. Rev. X, 8, 0121012, 2018
  3. Arute F, Arya K, Babbush R, Bacon D, Bardin JC, Barends R, Biswas R, Boixo S, Brandao FG, Buell DA, Nature, 574, 505, 2019
  4. Montanaro A, npj Quantum Inf., 2, 15023, 2016
  5. Imre S, Balazs F, Quantum computing and communications: an engineering approach, John Wiley & Sons (2005).
  6. Orús R, Mugel S, Lizaso E, Rev. Phys., 4, 100028, 2019
  7. Ying M, Artif. Intell., 174, 162, 2010
  8. Feynman RP, Feynman, Simulating physics with computers, CRC Press (2018).
  9. Benioff P, J. Stat. Phys., 22, 563, 1980
  10. Gamble S, in Frontiers of engineering: Reports on leading-edge engineering from the 2018 symposium, National Academies Press (2019).
  11. Raz R, Tal A, in Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing (2019).
  12. Fingerhuth M, Babej T, Wittek P, PloS One, 13, 0208561, 2018
  13. Garnier G, Front. Chem., 2, 17, 2014
  14. Biegler LT, Grossmann IE, Westerberg AW, Systematic methods for chemical process design, Prentice Hall, Old Tappan, NJ (1997).
  15. Dutta S, Optimization in chemical engineering, Cambridge University Press (2016).
  16. Venkatasubramanian V, AIChE J., 65, 466, 2019
  17. Shang C, You F, Engineering, 5, 1010, 2019
  18. Preskill J, Quantum, 2, 79, 2018
  19. McArdle S, Endo S, Aspuru-Guzik A, Benjamin SC, Yuan X, Rev. Mod. Phys., 92, 015003, 2020
  20. Tran TT, Do M, Rieffel EG, Frank J, Wang Z, O'Gorman B, Venturelli D, Beck JC, in Ninth annual symposium on combinatorial search (2016).
  21. Harwood S, Gambella C, Trenev D, Simonetto A, Bernal D, Greenberg D, IEEE Trans. Quantum Eng., 2, 1, 2021
  22. Ajagekar A, Humble T, You F, Comput. Chem. Eng., 132, 106630, 2020
  23. Omer B, Master’s thesis, Institute of Information Systems Technical University of Vienn na (2000).
  24. Britt KA, Humble TS, ACM J. Emerging Technol. Comput. Syst., 13, 1, 2017
  25. Deutsch DE, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 425, 73, 1989
  26. Adedoyin A, Ambrosiano J, Anisimov P, Bärtschi A, Casper W, Chennupati G, Coffrin C, Djidjev H, Gunter D, Karra S, arXiv preprint arXiv:1804.03719 (2018).
  27. McGeoch CC, Synthesis Lectures on Quantum Computing, 5, 1, 2014
  28. Griffiths DJ, Schroeter DF, Introduction to quantum mechanics, Cambridge University Press (2018).
  29. Albash T, Lidar DA, Rev. Mod. Phys., 90, 015002, 2018
  30. Farhi E, Goldstone J, Gutmann S, Sipser M, arXiv preprint quant-ph/0001106 (2000).
  31. Aharonov D, Van Dam W, Kempe J, Landau Z, Lloyd S, Regev O, SIAM Rev., 50, 755, 2008
  32. Kadowaki T, Nishimori H, Phys. Rev. E, 58, 5355, 1998
  33. “Final Report: Emerging Technologies Subcommittee Quantum Information Science”, Homeland Security Advisory Council.
  34. Bacon DM, Decoherence, control, and symmetry in quantum computers, University of California, Berkeley (2001).
  35. Xu Y, Chu J, Yuan J, Qiu J, Zhou Y, Zhang L, Tan X, Yu Y, Liu S, Li J, Phys. Rev. Lett., 125, 240503, 2020
  36. Pearson A, Mishra A, Hen I, Lidar DA, npj Quantum Inf., 5, 1, 2019
  37. Gottesman D, arXiv preprint arXiv:0904.2557 (2009).
  38. Pudenz KL, Albash T, Lidar DA, Nat. Commun., 5, 3243, 2014
  39. Cross AW, Bishop LS, Sheldon S, Nation PD, Gambetta JM, Phys. Rev., A, 100, 032328, 2019
  40. Gottesman D, Phys. Rev., A, 57, 127, 1998
  41. Boixo S, Isakov SV, Smelyanskiy VN, Babbush R, Ding N, Jiang Z, Bremner MJ, Martinis JM, Neven H, Nat. Phys., 14, 595, 2018
  42. Biegler LT, Grossmann IE, Comput. Chem. Eng., 28, 1169, 2004
  43. Kelner JA, Spielman DA, in Proceedings of the thirty-eighth annual ACM symposium on Theory of computing (2006).
  44. Grossmann IE, Westerberg AW, AIChE J., 46, 1700, 2000
  45. Furman KC, Sahinidis NV, Comput. Chem. Eng., 25, 1371, 2001
  46. Grossmann IE, Biegler LT, Comput. Chem. Eng., 28, 1193, 2004
  47. Bernstein E, Vazirani U, SIAM J. Comput., 26, 1411, 1997
  48. Rao SS, Engineering optimization: Theory and practice, John Wiley & Sons (2019).
  49. Aaronson S, SIGACT News, 36, 30, 2005
  50. Parr RG, Density functional theory of atoms and molecules, in Horizons of quantum chemistry, Springer (1980).
  51. Helgaker T, Klopper W, Tew DP, Mol. Phys., 106, 2107, 2008
  52. Cao Y, Romero J, Olson JP, Degroote M, Johnson PD, Kieferová M, Kivlichan ID, Menke T, Peropadre B, Sawaya NP, Chem. Rev., 119, 10856, 2019
  53. Peruzzo A, McClean J, Shadbolt P, Yung MH, Zhou XQ, Love PJ, Aspuru-Guzik A, O’brien JL, Nat. Commun., 5, 1, 2014
  54. Bauer B, Bravyi S, Motta M, Chan GKL, Chem. Rev., 120, 12685, 2020
  55. Andersson MP, Jones MN, Mikkelsen KV, You F, Mansouri SS, Curr. Opin. Chem. Eng., 36, 100754, 2022
  56. Alidaee B, Kochenberger GA, Ahmadian A, Int. J. Syst. Sci., 25, 401, 1994
  57. Krarup J, Pruzan PM, Computer-aided layout design, in Mathematical programming in use, Springer (1978).
  58. Kochenberger G, Hao JK, Glover F, Lewis M, Lü Z, Wang H, Wang Y, J. Comb. Optim., 28, 58, 2014
  59. Ajagekar A, You F, Energy, 179, 76, 2019
  60. Lucas A, Front. Phys., 2, 5, 2014
  61. Farhi E, Goldstone J, Gutmann S, arXiv preprint arXiv:1411. 4028 (2014).
  62. Guerreschi GG, Matsuura AY, Sci. Rep., 9, 1, 2019
  63. Patton R, Schuman C, Potok T, Quantum Inf. Process., 18, 2019
  64. Li J, Rhinehart RR, Comput. Chem. Eng., 22, 427, 1998
  65. Lee JH, Shin J, Realff MJ, Comput. Chem. Eng., 114, 111, 2018
  66. Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N, Lloyd S, Nature, 549, 195, 2017
  67. Aïmeur E, Brassard G, Gambs S, Machine learning in a quantum world. In conference of the canadian society for computational studies of intelligence, Springer, Berlin, Heidelberg (2006).
  68. Farhi E, Neven H, arXiv preprint arXiv:1802.06002 (2018).
  69. Wiebe N, Kapoor A, Svore K, arXiv preprint arXiv:1401.2142 (2014).
  70. Schuld M, Sweke R, Meyer JJ, Phys. Rev., A, 103, 032430, 2021
  71. Chiang L, Lu B, Castillo I, Annu. Rev. Chem. Biomol. Eng., 8, 63, 2017
  72. Cong I, Choi S, Lukin MD, Nat. Phys., 15, 1273, 2019
  73. Ajagekar A, You F, Comput. Chem. Eng., 143, 107119, 2020
  74. Harrow AW, Hassidim A, Lloyd S, Phys. Rev. Lett., 103, 150502, 2009
  75. Schuld M, Sinayskiy I, Petruccione F, Phys. Rev., A, 94, 022342, 2016
  76. Liu Y, Zhang S, Theor. Comput. Sci., 657, 38, 2017
  77. Aaronson S, Nat. Phys., 11, 291, 2015
  78. Bravo-Prieto C, LaRose R, Cerezo M, Subasi Y, Cincio L, Coles P, Bull. Am. Phys. Soc., 65, 2020
  79. Chang CC, Gambhir A, Humble TS, Sota S, Sci. Rep., 9, 1, 2019
  80. Li RY, Di Felice R, Rohs R, Lidar DA, npj Quantum Inf., 4, 14, 2018
  81. Lloyd S, Weedbrook C, Phys. Rev. Lett., 121, 040502, 2018
  82. Amin MH, Andriyash E, Rolfe J, Kulchytskyy B, Melko R, Phys. Rev. X, 8, 015002, 2018
  83. Zoufal C, Lucchi A, Woerner S, Quantum Mach. Intell., 3, 7, 2021
  84. Ajagekar A, You F, Appl. Energy, 303, 117628, 2021
  85. Chen SYC, Yang CHH, Qi J, Chen PY, Ma X, Goan HS, IEEE Access, 8, 141007, 2020
  86. Preskill J, Fault-tolerant quantum computation, in Introduction to quantum computation and information, World Scientific (1998).
  87. Campbell ET, Terhal BM, Vuillot C, Nature, 549, 172, 2017
  88. Arute F, Arya K, Babbush R, Bacon D, Bardin JC, Barends R, Boixo S, Broughton M, Buckley BB, Buell DA, Science, 369, 1084, 2020
  89. Zhou L, Wang ST, Choi S, Pichler H, Lukin MD, Phys. Rev. X, 10, 021067, 2020
  90. Brandao FG, Svore KM, in Annual Symposium on Foundations of Computer Science (FOCS), IEEE (2017).
  91. van Apeldoorn J, Gilyén A, arXiv preprint arXiv:1804.05058 (2018).
  92. Grover LK, in Proceedings of the twenty-eighth annual ACM symposium on Theory of Computing, Association for Computing Machinery, Philadelphia, Pennsylvania, USA (1996).
  93. Lloyd S, Mohseni M, Rebentrost P, arXiv preprint arXiv: 1307.0411 (2013).
  94. Wiebe N, Braun D, Lloyd S, Phys. Rev. Lett., 109, 050505, 2012
  95. Rebentrost P, Mohseni M, Lloyd S, Phys. Rev. Lett., 113, 130503, 2014
  96. Zhao Z, Fitzsimons JK, Fitzsimons JF, Phys. Rev., A, 99, 052331, 2019
  97. Lloyd S, Mohseni M, Rebentrost P, Nat. Phys., 10, 631, 2014
  98. Dong D, Chen C, Li H, Tarn T, IEEE Trans. Syst. Man Cybern. Part B Cybern., 38, 1207, 2008