Issue
Korean Journal of Chemical Engineering,
Vol.39, No.5, 1287-1298, 2022
Response surface analysis of energy balance and optimum condition for torrefaction of corn straw
Corn straw has potential as a biofuel, and is generated in large amounts globally. However, this potential remains underutilized, and torrefaction is one of the processes that can be implemented to improve the energy grade of this biomass. In this study, three process parameters (temperature, heating rate, residence time) were investigated using a response surface method to optimize the torrefaction process of corn straw. At 242.26 ℃, a 60 min residence time, and 6.28 ℃/min heating rate, the mass yield and higher heating value (HHV) reached their maximum values. Temperature was the most important factor influencing torrefaction, followed by residence time and then heating rate. The gas and liquid by-products were measured by mass spectrometry and mass spectrometry-gas chromatography, and the heat demand of torrefaction was measured by thermogravimetric analysis-differential scanning calorimetry. The HHV of the by-products changed little before 240 ℃ but increased considerably as the temperature further increased. The HHV at 242 ℃ was 1,273 kJ/kg. When the heat loss was 50%, 242 ℃ was the critical point of energy balance, and after that the torrefaction process was energy self-sufficient. These findings provide data to support the establishment of semi-industrial or industrial corn straw torrefaction devices.
[References]
  1. Manzano-Agugliaro F, Alcayde A, Montoya FG, Zapata-Sierra A, Gil C, Energy Rev., 18, 134, 2013
  2. Bui HH, Tran KQ, Chen WH, Bioresour. Technol., 199, 362, 2016
  3. Trubetskaya A, Leahy JJ, Yazhenskikh E, Müller M, Layden P, Johnson R, Ståhl K, Monaghan RFD, Energy, 171, 853, 2019
  4. Wannapeera J, Worasuwannarak N, J. Anal. Appl. Pyrolysis, 96, 173, 2012
  5. Moayedi H, Aghel B, Abdullahi MM, Nguyen H, Rashid A, J. Clean Prod., 237, 117851, 2019
  6. Sheldon RA, Green Chem., 16, 95, 2014
  7. Naik SN, Goud VV, Rout PK, Dalai AK, Renew. Sust. Energ. Rev., 14, 578, 2010
  8. Park J, Meng J, Lim KH, Rojas OJ, Park S, J. Anal. Appl. Pyrolysis, 100, 199, 2013
  9. Deng J, Wang G, Kuang J, Zhang Y, Luo Y, J. Anal. Appl. Pyrolysis, 86, 331, 2009
  10. Basu P, Sadhukhan AK, Gupta P, Rao S, Dhungana A, Acharya B, Bioresour. Technol., 159, 215, 2014
  11. Tran KQ, Luo X, Seisenbaeva G, Jirjis R, Appl. Energy, 112, 539, 2013
  12. Chen WH, Lu KM, Tsai CM, Appl. Energy, 100, 318, 2012
  13. Chen WH, Hsu HC, Lu KM, Lee WJ, Lin TC, Energy, 36, 3012, 2011
  14. Nunes LJR, Matias JCO, Catalão JPS, Energy Rev., 40, 153, 2014
  15. Chen WH, Kuo PC, Energy, 36, 803, 2011
  16. Chen WH, Liu SH, Juang TT, Tsai CM, Zhuang YQ, Appl. Energy, 160, 829, 2015
  17. Pawlak-Kruczek H, Krochmalny K, Mościcki K, Zgóra J, Czerep M, Ostrycharczyk M, Niedźwiecki L, Inżynieria i ochrona środowiska, 20, 457, 2017
  18. Sulaiman MH, Uemura Y, Azizan MT, Procedia Eng., 148, 573, 2016
  19. Chiou BS, Valenzuela-Medina D, Bilbao-Sainz C, Klamczynski AK, Avena-Bustillos RJ, Milczarek RR, Du WX, Glenn GM, Orts WJ, Bioresour. Technol., 177, 58, 2015
  20. Li H, Liu X, Legros R, Bi XT, Lim CJ, Sokhansanj S, Appl. Energy, 93, 680, 2012
  21. Liu Y, Rokni E, Yang R, Ren X, Sun R, Levendis YA, Fuel, 285, 119044, 2021
  22. Zhang S, Su Y, Xiong Y, Zhang H, Fuel, 262, 116667, 2020
  23. Kutlu O, Kocar G, Int. J. Energy Res., 42, 4746, 2018
  24. Singh S, Chakraborty JP, Mondal MK, Energy, 186, 115865, 2019
  25. Granados DA, Velásquez HI, Chejne F, Energy, 74, 181, 2014
  26. Bates RB, Ghoniem AF, Bioresour. Technol., 134, 331, 2013
  27. Dos Reis Ferreira RA, Da Silva Meireles C, Assunção RMN, Soares RR, J. Therm. Anal. Calorim., 132, 1535, 2018
  28. Singh RK, Jena K, Chakraborty JP, Sarkar A, Int. J. Hydrog. Energy, 45, 18922, 2020
  29. Ohliger A, Förster M, Kneer R, Fuel, 104, 607, 2013
  30. Medic D, Darr M, Shah A, Potter B, Zimmerman J, Fuel, 91, 147, 2012
  31. Bergman P, Boersma AR, 2005
  32. Mohadesi M, Aghel B, Maleki M, Ansari A, Fuel, 273, 117736, 2020
  33. Aghel B, Mohadesi M, Sahraei S, Chem. Eng. Technol., 41, 598, 2018
  34. Aghel B, Mohadesi M, Ansari A, Maleki M, Renew. Energy, 142, 207, 2019
  35. Arteaga-Pérez LE, Segura C, Bustamante-García V, Cápiro O, Jiménez R, Energy, 93, 1731, 2015
  36. Chang S, Zhao Z, Zheng A, He F, Huang Z, Li H, Energy Fuels, 26, 7009, 2012
  37. Arteaga-Pérez LE, Grandón H, Flores M, Segura C, Kelley SS, Bioresour. Technol., 238, 194, 2017
  38. Wang GJ, Luo YH, Jian D, Kuang JH, Zhang YL, Chin. Sci. Bull., 56, 1442, 2011
  39. Williams PT, Nugranad N, Energy, 25, 493, 2000
  40. Irfan M, Chen Q, Yue Y, Pang R, Lin Q, Zhao X, Chen H, Bioresour. Technol., 211, 457, 2016
  41. Wannapeera J, Fungtammasan B, Worasuwannarak N, J. Anal. Appl. Pyrolysis, 92, 99, 2011
  42. Esteves BM, Pereira HM, Bioresources, 4, 370, 2009
  43. Esteves B, Marques AV, Domingos I, Pereira H, Wood Sci. Technol., 42, 369, 2008
  44. Gonzalez-Pena MM, Hale M, Holzforschung, 63, 385, 2009
  45. Melkior T, Barthomeuf C, Bardet M, Fuel, 187, 250, 2017
  46. Pelaez-Samaniego MR, Yadama V, Lowell E, Espinoza- Herrera R, Wood Sci. Technol., 47, 1285, 2013
  47. Peng JH, Bi XT, Sokhansanj S, Lim CJ, Fuel, 111, 411, 2013
  48. Da Silva CMS, Carneiro ADCO, Vital BR, Figueiró CG, Fialho LDF, de Magalhães MA, Carvalho AG, Candido WL, Renew. Sust. Energ. Rev., 82, 2426, 2018
  49. Ribeiro J, Godina R, Matias J, Nunes L, Sustain, 10, 2323, 2018
  50. Milosavljevic I, Oja V, Suuberg EM, Ind. Eng. Chem. Res., 35, 653, 1996
  51. Gallego LJ, Cardona S, Martínez E, Rios LA, Waste and Biomass Valorization, 11, 2273, 2020