Issue
Korean Journal of Chemical Engineering,
Vol.39, No.5, 1165-1181, 2022
Dynamic behavior of an ellipsoidal bubble contaminated by surfactant near a vertical wall
Adding a small amount of surfactant to gas-liquid two-phase flow can markedly change bubble behavior, which has crucial application value in nuclear energy, petrochemical, chemical, and environmental engineering. In this paper, the dynamic behavior of a single ellipsoidal bubble (Re~800) contaminated by surfactant rising near a vertical wall in stagnant liquid is studied using the shadow method. The effects of different concentrations of sodium dodecyl sulfate solution (100 ppm, 400 ppm, 800 ppm) and initial dimensionless distances on bubble dynamics were compared. The dynamic parameters, shape oscillation, force, and energy of the bubble were analyzed. The results show that the critical initial dimensionless distance at which the collision occurs is decreased due to a dimensionless distance change from 3.3 to 0.23, accelerating the transition from zigzag to spiral movement. Transverse movement of the contaminated bubble is restrained. Because of the Marangoni effect caused by the surfactant, the boundary condition changes from zero shear to non-zero shear, resulting in a decrease in velocity and an increase in the drag coefficient. As the surfactant concentration increases, the lift coefficient does not significantly change with concentration variations. The influences of the wall effect on velocity and drag gradually weaken. Comparing free-rising and collision conditions, the aspect ratio of the contaminated bubble is distinct from the regularity of a clean bubble. The surfactant also changes the wall-normal velocity frequency and symmetrical shape frequency and inhibits energy conversion during collision.
[References]
  1. Tripathi MK, Sahu KC, Govindarajan R, Nat. Commun., 6, 1, 2015
  2. Takagi S, Matsumoto Y, Annu. Rev. Fluid Mech., 43, 1, 2011
  3. Ahmed Z, Izbassarov D, Lu J, Tryggvason G, Muradoglu M, Tammisola O, Int. J. Multiph. Flow, 126, 1, 2020
  4. Muradoglu M, Tryggvason G, J. Comput. Phys., 274, 1, 2014
  5. Stone HA, Annu. Rev. Fluid Mech., 26, 1, 1994
  6. Hosokawa S, Hayashi K, Tomiyama A, Int. J. Multiph. Flow, 97, 1, 2017
  7. Hosokawa S, Hayashi K, Tomiyama A, Exp. Therm. Fluid Sci., 96, 1, 2018
  8. Takagi S, Matsumoto Y, Annu. Rev. Fluid Mech., 43, 1, 2011
  9. Fukuta M, Takagi S, Matsumoto Y, Phys. Fluids, 20, 4, 2008
  10. Tagawa Y, Takagi S, Matsumoto Y, J. Fluid Mech., 738, 1, 2014
  11. Rodrigue D, De Kee D, Fong CCM, J. Non-Newton. Fluid Mech., 66, 1, 1996
  12. Tasoglu S, Demirci U, Muradoglu M, Phys. Fluids, 20, 4, 2008
  13. Cuenot B, Magnaudet J, Spennato B, J. Fluid Mech., 339, 25, 1997
  14. Fei Y, Pang M, Int. J. Heat Mass Transf., 121, 1, 2018
  15. Raymond F, Rosant JM, Chem. Eng. Sci., 55, 5, 2000
  16. Tzounakos A, Karamanev DG, Margaritis A, Bergougnou MA, Ind. Eng. Chem. Res., 43, 18, 2004
  17. Aoyama S, Hayashi K, Hosokawa S, Tomiyama A, Exp. Therm. Fluid Sci., 96, 1, 2018
  18. Clift R, Grace JR, Weber ME, Bubbles, drops and particles, Academic Press, New York (1978).
  19. De Vries AWG, Biesheuvel A, Van Wijngaarden L, Int. J. Multiph. Flow, 28, 11, 2002
  20. Takemura F, Takagi S, Magnaudet J, Matsumoto Y, J. Fluid Mech., 461, 1, 2002
  21. Takemura F, Magnaudet J, J. Fluid Mech., 495, 1, 2003
  22. Sugiyama K, Takemura F, J. Fluid Mech., 662, 1, 2010
  23. Sugioka K, Tsukada T, Int. J. Multiph. Flow, 71, 32, 2015
  24. Zaruba A, Lucas D, Prasser HM, Höhne T, Chem. Eng. Sci., 62, 6, 2007
  25. Jeong H, Park H, J. Fluid Mech., 771, 564, 2015
  26. Chen Y, Tu C, Yang Q, Wang Y, Bao F, Exp. Therm. Fluid Sci., 120, 110235, 2021
  27. Zhang J, Ni MJ, J. Fluid Mech., 828, 1, 2017
  28. Tomiyama A, Celata GP, Hosokawa S, Yoshida S, Int. J. Multiph. Flow, 28, 9, 2002
  29. Busciglio A, Vella G, Micale G, Rizzuti L, Chem. Eng. J., 140, 1, 2008
  30. Celata GP, D’Annibale F, Di Marco P, Memoli G, Tomiyama A, Exp. Therm. Fluid Sci., 31, 6, 2007
  31. Zenit R, Magnaudet J, Int. J. Multiph. Flow, 35, 2, 2009
  32. Lee J, Park H, Int. J. Multiph. Flow, 91, 1, 2017
  33. Huang J, Saito T, Chem. Eng. Sci., 170, 105, 2017
  34. Figueroa-Espinoza B, Zenit R, Legendre D, J. Fluid Mech., 616, 419, 2008
  35. Veldhuis C, Biesheuvel A, Van Wijngaarden L, Phys. Fluids, 20, 4, 2008
  36. Fdhila RB, Duineveld PC, Phys. Fluids, 8, 2, 1996
  37. Lunde K, Perkins RJ, Appl. Sci. Res., 58, 387, 1998
  38. Magnaudet J, Eames I, Annu. Rev. Fluid Mech., 32, 1, 2000
  39. Mougin G, Magnaudet J, Int. J. Multiph. Flow, 28, 11, 2002
  40. Shew WL, Ponect S, Pinton JF, J. Fluid Mech., 569, 51, 2006
  41. Kusuno H, Yamamoto H, Sanada T, Phys. Fluids, 31, 7, 2019
  42. Moctezuma MF, Lima-Ochoterena R, Zenit R, Phys. Fluids, 17, 9, 2005
  43. Figueroa-Espinoza B, Zenit R, Legendre D, J. Fluid Mech., 616, 1, 2008
  44. Feng J, Bolotnov IA, Int. J. Multiph. Flow, 99, 1, 2018
  45. Hayashi K, Tomiyama A, Int. J. Multiph. Flow, 99, 1, 2018